Ubuntu编译GPU版本Pytorch

本文记录了在Ubuntu18.04上编译GPU版PyTorch1.6.0的过程,包括环境配置、源码获取、编译步骤,特别强调了CUDA、GCC版本与PyTorch的兼容性问题,以及如何使用Clang编译器进行编译。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Ubuntu编译GPU版本Pytorch

摘要

两年前,疫情爆发后,呆在家中,无奈在有限的环境下编译了GPU版本Pytorch,这是当时的总结。前面当时编出来的whl包和源码没有留存。讽刺的是,现在我再按照自己的总结编译Pytorch时,依然走了很多的弯路。先前的总结没有注意所编译的pytorch版本,这次需要编译特定版本,对第三方的库git clone时也令人崩溃。希望能给到同样需要编译pytorch的人一些帮助。

环境

操作系统:Ubuntu18.04
硬件环境:
CPU: i5 3210m
RAM: 6G
显卡: GT640m
显卡驱动:470.103.01
CUDA: cuda10.0
CC: gcc7.5
CXX: g++7.5
python: 3.7.4
cmake:3.13
clang: 6.0.0
需要编译的pytorch:1.6.0
注意:

  • 显卡型号、cuda版本和cudnn版本三者需要配合。比如CUDA11.0不支持GT640m显卡。
  • 新版本的Pytorch(v1.10.1)要求更高版本的CUDA&
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值