基于大语言模型的多智能体系统:协作机制与应用展望

随着大语言模型(LLMs)的最新进展,代理式人工智能(AgenticAI)在现实应用中取得了显著进展。这些基于大语言模型的多智能体系统(MASs)使得一组智能体能够协作解决复杂任务,并以大规模方式实现集体行动。

引言

动机

大语言模型(LLMs)的最新进展已彻底改变了人工智能(AI),使其能够执行复杂的任务,如创造性写作、推理和决策,堪比人类水平。尽管这些模型在单独使用时展现了显著的能力,但它们仍然存在一些内在的局限性,如幻觉问题、自回归特性和扩展法则。为了应对这些挑战,代理式人工智能(AgenticAI)利用LLM作为大脑或协调者,将它们与外部工具和任务(如规划)结合,使基于LLM的智能体能够采取行动、解决复杂问题,并与外部环境进行交互。

现状与贡献

本工作旨在提供基于LLM的多智能体协作系统中智能体间协作基础的全面视角。以协作为主要焦点,我们的研究将基于LLM的智能体间协作表征为:参与者(涉及的智能体)、类型(如合作、竞争或合作竞争)、结构(如点对点、集中式或分布式)、策略(如基于角色、基于规则或基于模型)和协调层。

背景知识

多智能体系统(MAS)

多智能体系统(MAS)是由多个相互作用的智能体组成的计算机化系统。这些智能体具有自主性,能够感知环境、与其他智能体交互,并通过协作解决复杂的任务。

大语言模型(LLMs)

大语言模型(LLMs)是基于Transformer架构的深度学习模型,如OpenAI的GPT、Meta的LLaMA和Google的Gemini系列。这些模型通过在大规模文本语料库上进行训练,具备了强大的语言理解和生成能力。

协作式人工智能(CollaborativeAI)

协作式人工智能(CollaborativeAI)是指设计用于与其他AI智能体或人类协作的AI系统。协作式AI的研究方向包括多智能体系统、人机交互、博弈论和自然语言处理。

多智能体协作概念

智能体与协作系统的定义

在LLM多智能体协作系统中,智能体可以数学表示为 a={m,o,e,x,y},其中:

  • 模型 m:AI模型,包括其架构(arch)、智能体的特定内存(mem)和可选的适配器(adp)。
  • 目标 o:智能体的目标或任务,指导其在系统中的行为。
  • 环境 e:智能体所处的环境或上下文,通常由上下文窗口中的令牌数量限制。
  • 输入 x:智能体的输入感知,如文本或传感器数据。
  • 输出 y:智能体的相应动作或输出,定义为 y=m(o,e,x)

问题定义

在LLM驱动的MAS中,智能体之间的协作至关重要。每个协作都有一个通信通道 c,协作包括:

  • 任务分配:根据智能体的独特专业知识和资源,将任务分配给多个智能体。
  • 协作机制:定义智能体之间的协作机制,使它们能够共同工作。
  • 决策制定:智能体之间的决策制定,以达到最终目标。

方法论

协作类型

合作

合作是LLM多智能体系统中最常见的协作类型。当智能体将其个体目标 o_i 与共享的集体目标 O_collab 对齐时,它们会共同努力实现互利的结果。

竞争

竞争发生在智能体的个体目标 o_i 与其他智能体的目标冲突或资源有限的情况下。竞争可以推动智能体发展更高级的推理能力和创造性问题解决能力,增强系统的适应性。

竞合

竞合是合作与竞争的结合,智能体在某些任务上合作,而在其他任务上竞争。

协作策略

基于规则的协议

基于规则的协议通过预定义的规则严格控制智能体之间的交互,确保智能体按照系统范围内的约束协调行动。

基于角色的协议

基于角色的协议通过为每个智能体分配特定的角色或分工,使智能体能够专注于其专业领域内的子任务。

基于模型的协议

基于模型的协议在输入感知存在不确定性的环境中提供了决策制定的灵活性。

通信结构

集中式结构

集中式结构中,所有智能体都连接到一个中央智能体,中央智能体负责管理和协调智能体之间的交互。

分布式结构

分布式结构中,控制权和决策权分布在多个智能体之间,每个智能体基于本地信息和有限的通信进行操作。

分层结构

分层结构中,智能体按层次组织,每个层次的智能体具有不同的功能和权限。

协调与编排

静态架构

静态架构依赖于领域知识和预定义的规则来建立协作通道。

动态架构

动态架构能够适应变化的环境和任务需求,通过管理智能体或自适应机制实时分配角色和定义协作通道。

实际应用

5G/6G网络与工业5.0

LLMs在5G/6G网络和工业5.0中的应用显著提升了边缘网络的性能。

问答与自然语言生成(QA/NLG)

LLMs在问答和自然语言生成任务中的应用显著提升了系统的能力。

社会与文化领域

LLMs和MASs在社会和文化领域的应用展示了这些系统在模拟人类行为、社会动态和文化互动方面的潜力。

开放问题与讨论

集体智能的实现实现

实现集体智能需要解决多个开放挑战,包括统一治理、共享决策制定、智能体作为数字物种的设计、可扩展性和资源管理,以及发现和探索意外的泛化能力。

综合评估与基准测试

评估MASs的性能和行为比评估单个LLMs更为复杂。需要建立统一的、广泛的基准测试框架,以确保评估结果的可重复性和一致性。

伦理风险与安全性

LLMs在多智能体系统中的部署可能放大幻觉和对抗性攻击的风险。确保智能体在伦理边界内操作,并防止有害行为的发生,是确保系统安全性和可靠性的关键。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值