NLP在电子健康记录方面的应用(文献阅读)
根据 A guide to deep learning in healthcare 深度学习在医疗健康领域的应用概述–nature论文中提到的与NLP相关的深度学习技术在医疗领域的应用,对上述几篇论文进行阅读和总结,以便逐步深入了解这个领域的具体问题和当前的解决方案。
Deep EHR: a survey of recent advances in deep learning techniques for electronic health record (EHR) analysis
摘要
在过去的十年里,电子健康记录(EHR)信息量激增。虽然主要是用于存档患者信息和执行卫生保健任务,如计费,但许多研究人员发现,这些记录可以二次使用在各种临床信息学应用中。与此同时,机器学习在深度学习领域取得了广泛的进展。本文,调研了基于EHR数据,将DL应用在临床应用中的一些研究,并发现一系列DL技术和框架被应用到多种类型的临床应用中包括信息提取、表示学习,结果预测,表现型分析,去身份化。同时也指出了当前研究的几个局限性,包括模型可解释性、数据异构性和缺乏通用基准。最后,总结了该领域的现状,并确定了未来深入EHR研究的方向。
深度学习技术
上图是应用于EHR数据分析的主要深度学习算法,可以根据推荐的论文进行详细的了解。
深度学习应用
针对EHR的主要项目如上表。文中介绍了每个task采用的模型算法,以及每项任务采用哪种评估指标。
深度学习的可解释性
深度学习的可解释与性能存在一定的对立性,某种程度上说,正是深度学习的不可解释性才使其性能如此好。但临床领域需要可解释性,为使深度学习具有更好的可解释性,本文总结了当前文献进行的尝试。
- 最大激活单元
- 约束限制
- 定性聚类(t-SNE、PCA)
- 模仿学习(通过机器学习模仿深度学习)
EHR分析的未来方向
Scalable and accurate deep learning with electronic health records
摘要
电子健康记录(EHR)数据预测建模有望推动个性化医疗并提高医疗质量。构建预测统计模型通常需要从标准化的EHR数据中提取辅助预测变量,不但消耗大量人力,还会丢失患者记录中的绝大多数信息。我们提出了一种基于快速医疗互操作资源(FHIR)格式的患者完整原始EHR记录的表示方法。我们证明采用这种表示的深度学习方法能够准确地预测来自多个中心的多个医疗事件,而不需要特定站点的数据协调。我们使用来自美国两个学术医疗中心的去身份化的EHR数据对我们的方法进行了验证,其中包括216,221名住院至少24h的成人患者。按照我们提出的顺序格式,这批EHR数据总共展开为46,864,534,945个数据点,包括临床记录。深度学习模型实现了高精度预测等任务:住院死亡率(AUROC为0.93 - 0.94),30天内意外再入院(AUROC 0.75 - 0.76),延长住院时间(AUROC 0.85 - 0.86),和所有病人的出院最终诊断(frequency-weighted AUROC 0.90)。这些模型在所有情况下都优于传统的临床使用的预测模型。我们相信,这种方法可以用于为各种临床场景创建准确和可伸缩的预测。在一个特定预测的案例研究中,我们证明了神经网络可以用来识别患者图表中的相关信息。