pytorch 如何设置 可学习参数

如何根据自己需求设定,可学习参数,并进行初始化。

#比如cnn输出4个东西,你又不想concate到到一起,你想用权重加法,权重又不想自己设定,想让网络自己学

#requires_grad=True这个很重要

#设置前置网络及 可学习参数
self.cnn=cnn_output4()
self.fuse_weight_1 = torch.nn.Parameter(torch.FloatTensor(1), requires_grad=True)
self.fuse_weight_2 = torch.nn.Parameter(torch.FloatTensor(1), requires_grad=True)
self.fuse_weight_3 = torch.nn.Parameter(torch.FloatTensor(1), requires_grad=True)
self.fuse_weight_4 = torch.nn.Parameter(torch.FloatTensor(1), requires_grad=True)

#初始化
self.fuse_weight_1.data.fill_(0.25)
self.fuse_weight_2.data.fill_(0.25)
self.fuse_weight_3.data.fill_(0.25)
self.fuse_weight_4.data.fill_(0.25)

def forward(x):
    x1,x2,x3,x4=self.cnn(x)
    return fuse_weight_1*x1+fuse_weight_2*x2+fuse_weight_3*x3+fuse_weight_4*x4
  

 

评论 29
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值