【FC-DenseNet】The One Hundred Layers Tiramisu:Fully Convolutional DenseNets for Semantic Segmentation

这篇论文介绍了FC-DenseNet,一种在语义分割任务中采用DenseNet结构的全卷积网络。在Camvids和Gatech数据集上,未经后处理和预训练的情况下,该模型达到了最先进的结果。FC-DenseNet通过减少内存消耗的密集块设计,实现了深网络结构但参数较少的优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述
CVPRW(CVPR workshops) 2017
【论文名字:提拉米苏】

概述


  • 要解决的问题
    • 语义分割,没针对什么特别的问题,算是站在巨人的肩膀继续建造上层吧。
  • 采用的方法
    • 利用了DenseNets的结构的Dense连接
  • 结果如何
    • achieve state-of-the-art results在Camvids和Gatech数据集(无任何后处理和预训练)。
    • code
  • Contributions
    • 使用了DenseNet的结构到语义分割的方向

细节


简略结构
在这里插入图片描述
但是其中的Dense block是下图,有所更改:本来按照原来的dense block

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值