B树及应用

B树

B树是为磁盘或其他直接存取辅助存储设备而设计的一种平衡搜索树。B树类似于红黑树,但B树在降低I/O操作方面更好。许多数据库系统使用B树或B树的变种来存储信息

B树与红黑树的不同在于B树的节点可以有多个孩子,一个B树的子节点可以相当大,通常依赖于所使用的磁盘单元特性。一颗含有n个节点的B树其高度为O(lgn)。一颗B树严格高度可能比一颗红黑树的高度小很多,因为其子节点可以有多个。我们可以使用B树在时间O(lgn)内完成一些动态集合操作
在这里插入图片描述
如图,B树的内部节点x包含x.n个关键字,那么节点x就有x.n+1个孩子。节点x中关键字就是分隔点,把节点x所处理的关键字的属性分隔为x.n+1个子域,每个子域都由x的一个孩子处理。当在一颗B树中搜索某个关键字,将在x中的x.n个关键字做比较,确定一个(x.n+1)路的选择。但叶节点的结构与内部节点的结构不同

辅存上的数据结构

磁存储技术(磁盘或磁带等)容量通常比主存高出两个数量级,而每位的存储代价比主存低一个数量级。由于磁盘的构成决定其比主存要慢很多,磁盘读取数据时需要旋转磁盘和移动磁臂,这两个机械运动将占用一定时间。目前商业磁盘转速5400~15000 转/分钟(RPM),15000RPM用于服务器级的驱动,7200RPM用于台式机上,5400RPM用于笔记本。7200RPM旋转一圈需要8.33ms,比硅存储存取50ns要高5个数量级。商用磁盘平均存取时间在8~11ms

为摊还机械运动所花费等待时间,磁盘一次读取多个数据项。信息被分为一系列相等大小的在柱面内连续出现的位页面,每个磁盘读或写一个或多个完整的页面。一般一页的长度为211~214字节

在一个典型的B树应用中,需要处理的数据量非常大,所有数据无法一次装入主存。B树算法将所需页面从磁盘复制到主存,然后将修改过的页面写回磁盘。任何时刻B树算法都只需要在主存中保持一定数量的页面。因此主存的大小并不限制被处理B树的大小

设x为指向一个对象的指针,如果该对象已经在内存中,则可以直接访问其属性,但如果不在,则需要先执行DISK-READ(x)操作,将对象读入主存中。操作DISK-WRITE(x)完成对像x的属性修改保存,一个对象操作的典型模式如下:

    x = a pointer to some object
    DISK-READ(x)
    访问或修改x属性
    DISK-WRITE(x)

在大多数操作系统中,一个B树算法的运行时间主要由所执行的DISK-READ和DISK-WRITE操作次数决定,我们希望每次能够尽可能多的读取或写入数据。一个B树节点通常和一个完整磁盘一样大,磁盘页的大小限制一个B树节点可以含有的孩子数

对存储在磁盘上一颗大的B树,通常分支因子在50~2000之间,具体取决于一个关键字相对于一页的大小。一个大的分支因子可以大大降低树的高度及查找任何一个关键字所需的磁盘存储次数

B树定义

任何和关键字相关联的卫星数据都将与关键字存储在同一个节点。比如B树的变种,B+树就是把所有卫星数据都存储在叶节点上,以最大化内部节点的分支因子

一颗B树T是具有以下性质的有根树(根为T.root)

  • 每个节点x有下面属性

    • x.n,当前存储在节点x中的关键字个数

    • x.n个关键字本身x.key1, x.key2, …, x.keyx.n,以非降序存放,x.key1 <= x.
      key2 <= … <= x.keyx.n

    • x.leaf,布尔值,x为叶节点,则为TRUE;x为内部节点,则为FALSE

  • 每个内部节点x,包含x.n + 1个指向其孩子的指针x.c1, x.c2, …, x.cx.n+1。叶节点没有孩子,其ci属性没有定义

  • 关键字x.keyi对存储在各个子树中的关键字范围加以分隔:如果k1为任意一个存储在以x.ci为根的子树中的关键字,则ki <= x.key1 <= k2 <= x.key2 <= … <= x.keyx.n <= kx.n+1

  • 每个叶节点具有相同的深度,即树的高度h

  • 每个节点所包含的关键字个数有上界和下界。用一个被称为B树的最小度数的固定整数t>=2来表示

    • 除根节点以外的每个节点必须至少有t-1个关键字,除根节点以外的每个内部节点至少有t个孩子。如果树非空,根节点至少有一个关键字

    • 每个节点至多可以包含2t-1个关键字,一个内部节点至多可有2t个孩子,当一个节点恰好有2t-1个关键字时,称该节点是满的

t=2时的B树是最简单的。每个内部结点有2、3、或4个孩子,即一颗2-3-4树。在实际中,t值越大,B树高度越小

B树高度

B树上大多数操作所需的磁盘存取次数是与B树高度成正比

如果n>=1,那么对任意一颗包含n个关键字、高度为h、最小度数t>=2的B树T,有h<=logt(n+1)/2

由于B树的高度公式可知,当t变大时高度再减少,相较于红黑树的高度,B树的高度可以很低。因此B树避免了大量的磁盘访问

B树上的基本操作

在讨论B树的基本操作前,我们约定

  • B树的根节点始终在主存中,无需对根做DISK-READ操作,当根节点被改变后,需要对根节点做一次DISK-WRITE操作

  • 任何当作参数传递的节点在传递之前,都需要对他们做一次DISK-READ操作

搜索B树

搜索B树与搜索二叉树类似,只是B树搜索时,每个节点做的不是二路分支选择,而是(x.n+1)路分支选择

B-TREE-SEARCH是定义在二叉搜索树上的TREE-SEARCH过程的一个推广。输入为指向某个子树根节点x的指针,及需要在该子树中搜索的一个关键字k。如果k在B树中,则返回节点y和使得y.keyi = k的下标i组成的有序对(y, i);否则,返回NIL

B-TREE-SEARCH(x, k)
1 i = 1
2 while i <= x.n and k > x.key<sub>i</sub>
3   i = i + 1
4 if i <= x.n and k == x.key<sub>i</sub>
5   return(x, i)
6 else if x.leaf
7   return NIL
8 else DISK-READ(x, c<sub>i</sub>)
9   return B-TREE-SEARCH(x.c<sub>i</sub>, k) 

B树搜索过程构成一条从树根向下的简单路径。在B-TREE-SEARCH过程访问的磁盘页面数为O(h) = O(logtn),h为B树的高,n为B树所含关键字个数。由于x.n<2t,在2~3行的循环每个节点中花费的时间为O(t),总的CPU时间为O(th) = O(t*logtn)

创建一颗空的B树

为创建一颗B树T,先用B-TREE-CREATE来创建一个空的根节点,然后调用B-TREE-INSERT来添加新的关键字。在此过程中需要使用ALLOCATE-NODE,其在O(1)时间内为新节点分配一个磁盘页

B-TREE-CREATE
1 x = ALLOCATE-NODE()
2 x.leaf = TRUE
3 x.n = 0
4 DISK-WRITE(x)
5 T.root = x

向B树中插入一个关键字

B树中插入一个关键字要比二叉搜索树中插入一个关键字复杂得多。在B树中,不能简单创建一个新的叶结点插入,这样将B树变得不合法。我们会将新的关键字插入一个已经存在的叶结点。但我们不能将关键字插入一个满的叶结点,因此我们引入一个操作,将一个满的结点y(2t-1个关键字)按其中间关键字y.keyt分裂为两个各含t-1个关键字的结点。中间关键字被提升到y的父节点,用于标识两颗新树的划分点。如果y的父结点也是满的,则需要插入新的关键字之前将其分裂,
最终满结点的分裂会沿树向上传播

在B树中实际插入新关键字,是从根节点开始向下查找,并将查找过程中遇到的每个满结点分裂,直到插入新关键字为止

分裂B树中的结点

过程B-TREE-SPLIT-CHILD输入是一个非满的内部结点x和一个使x.ci为x的满子节点的下标i。此过程这个子节点分裂成两个,并调整x,使其包含多出来的孩子。要分裂一个满的根,需要让根成为一个新的空根结点的孩子,才能使用B-TREE-SPLIT-CHILD。树的高度也因此增加1,分裂是树长高的唯一途径

满节点y=x.ci按照其中间关键字S进行分裂,S被提升到y的父节点x,y中大于中间关键字的关键字都置于一个新的节点z中,成为x的一个新孩子

B-TREE-SPLIT-CHILD(x,i)
1   z = ALLOCATE-NODE()
2   y = x.c<sub>i</sub>
3   z.leaf = y.leaf
4   z.n = t - 1
5   for j = 1 to t - 1
6     z.key<sub>j</sub> = y.key<sub>j + 1</sub>
7   if not y.leaf
8     for j = 1 to t
9       z.c<sub>j</sub> = y.c<sub>j + 1</sub>
10  y.n = t - 1
11  for j = x.n + 1 downto i + 1
12  x.c<sub>j + 1</sub> = x.c<sub>j</sub>
13  x.c<sub>i + 1</sub> = z
14  for j = x.n downto i
15    x.key<sub>j + 1</sub> = x.key<sub>j</sub>
16  x.key<sub>i</sub> = y.key<sub>t</sub>
17  x.n = x.n + 1
18  DISK-WRITE(y)
19  DISK-WRITE(z)
20  DISK-WRITE(x)

B-TREE-SPLIT-CHILD过程中,x是被分裂的结点,y是x的第i个孩子。开始结点y有2t个孩子,2t-1个关键字,在分裂后减少至t个孩子,t-1个关键字。结点z取走y的t个最大的孩子,t-1个关键字,并且z成为x的新孩子,它在x的孩子表中仅位于y之后。y的中间关键字上升到x中,成为分隔y和z的关键字

以沿树单程下行方式向B树插入关键字

在一颗高度为h的B树中,以沿树单程下行方式插入一个关键字k的操作需要O(h)次磁盘存取。所需的CPU时间为O(th)=O(tlogtn)。过程B-TREE-INSERT利用B-TREE-SPLIT-CHILD来保证递归始终不会降至一个满结点上

B-TREE-INSERT(T, k)
1   r = T.root
2   if r.n == 2t - 1
3     s = ALLOCATE-NODE()
4     T.root = s
5     s.leaf = FALSE
6     s.n = 0
7     s.c1 = r
8     B-TREE-SPLIT-CHILD(s, 1)
9     B-TREE-INSERT-NONFULL(s. k)
10  else B-TREE-INSERT-NONFULL(r, k)

第3~9行处理根节点为满的情况,原来的根节点被分裂,一个新的节点s成为根。对根进行分裂是增加B树高度的唯一途径。与二叉搜索树不同,B树高度的增加发生在顶部而不是底部。过程通过调用B-TREE-INSERT-NONFULL完成将关键字k插入以非满的根节点为根的树中,在需要时沿树向下递归,通过B-TREE-SPLIT-CHILD来保证任何时刻所递归处理的节点都是非满的。辅助过程B-TREE-INSERT-NONFULL将关键字插入节点x,要求调用该过程时x是非满的

B-TREE-INSERT-NONFULL(x, k)
1   i = x.n
2   if x.leaf
3       while i >= 1 and k < x.key<sub>i</sub>
4          x.key<sub>i + 1</sub> = x.key<sub>i</sub>
5          i = i - 1
6       x.key<sub>i + 1</sub> = k
7       x.n = x.n + 1
8       DISK-WRITE(x)
9   else while i >= 1 and k < x.key
10        i = i -1
11      i = i + 1
12      DISK-READ(x.c<sub>i</sub>)
13      if x.c<sub>i</sub>.n == 2t - 1
14        B-TREE-SPLIT-CHILD(x, i)
15        if k > x.key<sub></sub>
16           i = i + 1
17      B-TREE-INSERT-NONFULL(x.ci, k)    

第3~8行处理x为叶节点情况,将关键字k插入x。如果x不是叶节点,则必须将k插入以内部节点x为根的子树中适当的叶节点中去。第9~11决定向x的哪个子节点递归下降。第13行检查是否是递归降至满节点上。若是则第14行用B-TREE-SPLIT-CHILD将该子节点分裂为两个非满的孩子,第15~16确定向两个孩子中的哪个下降。第17行递归将k插入合适的子树中

对一颗高度为h的B树来说,B-TREE-INSERT要做O(h)次磁盘存取,因为每次调用B-TREE-INSERT-NONFULL之间,只做O(1)次DISK-READ和DISK-WRITE操作。所占用的总CPU时间为O(th) = O(tlogn)。因为B-TREE-INSERT-NONFULL是尾递归,所以也可以用while循环实现。在任何时刻需要留在主存中的页面数为O(1)

从B树中删除关键字

相较于B树的插入操作,删除操作显得更加复杂。因为可以从任何一个节点删除一个关键子,而不必必须是叶节点,而且在内部删除一个关键字后,还需要考虑从新安排这个节点的孩子。防止因删除而导致树的结构违反B树性质,就像不能因插入一个关键字而使节点变得太大一样,也不能因为删除一个关键字变得太小,根节点除外,根节点关键字个数可以少于t-1个。

过程B-TREE-DELETE从以x为根的子数中删除关键字k。节点x递归调用自身时,x中关键字个数至少为最小度t。这个条件要求比通常B树中的最少关键字个数多一个以上,使得有时在递归下降至子节点前,需要将一个关键字移到子节点中。如果根节点x成为一个不含任何关键字的内部节点,那么x就要被删除,x的唯一孩子x.c1成为树的新根,从树的高度降低1,同时也维持树根必须包含至少一个关键字的性质

从B树中删除关键字的各种情况

  • 如果关键字k在节点x中,并且x是叶节点,则从x中删除k

  • 如果关键字k在节点x中,并且x是内部节点,则需要做如下操作

    • 如果节点x中前于k的子节点y至少包含t个关键字,则找出k在以y为根的子树中的前驱k’。递归删除k’,并在x中用k’代替k

    • 对称地,如果y有少于t个关键字,则检查节点x中后于k的子节点z。如果z至少有t个关键字,则找出k在以z为根的子树中的后续k’,递归删除k’,并在x中用k’代替k

    • 如果y和z都只含有t-1个关键字,则将k和z的全部合并进y,这样x就失去了k和指向z的指针,并且y现在包含2t-1个关键字。然后释放z并递归从y中删除k

如果关键字k当前不在内部节点x中,则确定必包含k的子树的根x.ci,如果x.ci只有t-1个关键字,必须执行下面的步骤1或者步骤2来保证降至一个至少包含t个关键字的节点。然后对x的某个合适的子节点进行递归而结束

  • 如果x.ci只含有t-1个关键字,但其一个相邻的兄弟至少包含t个关键字,则将x中的某个关键字降至x.ci中,将x.ci的相邻兄弟中的一个的关键字升至x,将该兄弟中相应的孩子指针移到x.ci,这样使得x.ci增加一个额外的关键字

  • 如果x.ci以及x.ci的所有相邻兄弟都是包含t-1个关键字,则将x.ci与一个兄弟合并,即将x的一个关键字移至新合并的节点,使之成为该节点的中间关键字

一颗B树中的大部分关键字都在叶节点,在实际删除操作中,经常都是从叶节点中删除关键字。这样B-TREE-DELETE过程只要沿树下降一趟即可,不需要向上回溯。当删除某个内部节点关键字时,过程也是沿树下降一趟,但可能需要返回删除了关键字的那个节点,以用其前驱或后续来取代被删除的关键字

在对一颗高度为h的B树进行删除关键字操作,只需要O(h)次磁盘操作,在递归调用该过程之间,仅需O(1)次对DISK-READ和DISK-WRITE的调用,所需CPU时间为O(th)=O(tlogtn)

B树的java实现

具体实现请点击详情获取

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值