Day21-Count Square Submatrices with All Ones(Medium)
问题描述:
Given a m * n matrix of ones and zeros, return how many square submatrices have all ones.
一个0,1矩阵中有多少个有1组成的正方形,这里的正方形的边长可以是1,2,3…到矩阵的长度。正方形中的元素必须是1.
Example:
Example 1:
Input: matrix =
[
[0,1,1,1],
[1,1,1,1],
[0,1,1,1]
]
Output: 15
Explanation:
There are 10 squares of side 1.
There are 4 squares of side 2.
There is 1 square of side 3.
Total number of squares = 10 + 4 + 1 = 15.
Example 2:
Input: matrix =
[
[1,0,1],
[1,1,0],
[1,1,0]
]
Output: 7
Explanation:
There are 6 squares of side 1.
There is 1 square of side 2.
Total number of squares = 6 + 1 = 7.
Constraints:
1 <= arr.length <= 300
1 <= arr[0].length <= 300
0 <= arr[i][j] <= 1
解法:
动态规划(DP)的题了,唉,我啥时候能独自解决一道动态规划的题啊。这道题又是看了别人的解析视频写出来的。
我们设置一个变量存储最后返回的结果,初始值为0.然后我们遍历矩阵,遇到边界值时如果为1,我们返回的结果加1,如果为0则跳出这一次循环。遍历到中间值时,我们判断左边和上边和左斜对角线的值,返回最小值加1.
也就是我们在遍历的过程中同时改变着矩阵的数值,将矩阵变成用来存储每个点所能形成的正方形的个数值。具体图示解释还是看这个视频吧。动态规划的题不画个图真的很难解释。
class Solution:
def countSquares(self, matrix: List[List[int]]) -> int:
m = len(matrix)
n = len(matrix[0])
if m == 0:
return 0
result = 0
for i in range(m):
for j in range(n):
if matrix[i][j] == 0:
continue
if i == 0 or j == 0:
result += 1
continue
min_temp = min(matrix[i - 1][j],matrix[i - 1][j - 1],matrix[i][j - 1])
matrix[i][j] += min_temp
result += matrix[i][j]
return result