5月挑战Day21-Count Square Submatrices with All Ones(Medium)

本文介绍了一种利用动态规划求解矩阵中由1构成的所有正方形子矩阵数量的方法。通过遍历矩阵,更新每个点所能形成的最大正方形边长,并累加得到最终结果。示例展示了输入矩阵与预期输出,帮助理解算法实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Day21-Count Square Submatrices with All Ones(Medium)

问题描述:

Given a m * n matrix of ones and zeros, return how many square submatrices have all ones.

一个0,1矩阵中有多少个有1组成的正方形,这里的正方形的边长可以是1,2,3…到矩阵的长度。正方形中的元素必须是1.

Example:

Example 1:

Input: matrix =
[
  [0,1,1,1],
  [1,1,1,1],
  [0,1,1,1]
]
Output: 15
Explanation: 
There are 10 squares of side 1.
There are 4 squares of side 2.
There is  1 square of side 3.
Total number of squares = 10 + 4 + 1 = 15.
Example 2:

Input: matrix = 
[
  [1,0,1],
  [1,1,0],
  [1,1,0]
]
Output: 7
Explanation: 
There are 6 squares of side 1.  
There is 1 square of side 2. 
Total number of squares = 6 + 1 = 7.
 

Constraints:

1 <= arr.length <= 300
1 <= arr[0].length <= 300
0 <= arr[i][j] <= 1

解法:

动态规划(DP)的题了,唉,我啥时候能独自解决一道动态规划的题啊。这道题又是看了别人的解析视频写出来的。

我们设置一个变量存储最后返回的结果,初始值为0.然后我们遍历矩阵,遇到边界值时如果为1,我们返回的结果加1,如果为0则跳出这一次循环。遍历到中间值时,我们判断左边和上边和左斜对角线的值,返回最小值加1.

也就是我们在遍历的过程中同时改变着矩阵的数值,将矩阵变成用来存储每个点所能形成的正方形的个数值。具体图示解释还是看这个视频吧。动态规划的题不画个图真的很难解释。

class Solution:
    def countSquares(self, matrix: List[List[int]]) -> int:
        m = len(matrix)
        n = len(matrix[0])
        
        if m == 0:
            return 0
        
        result = 0
        
        for i in range(m):
            for j in range(n):
                if matrix[i][j] == 0:
                    continue
                if i == 0 or j == 0:
                    result += 1
                    continue
                    
                min_temp = min(matrix[i - 1][j],matrix[i - 1][j - 1],matrix[i][j - 1])
                matrix[i][j] += min_temp
                result += matrix[i][j]
                
        return result

时间复杂度为O(mn)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值