5月挑战Day30- K Closest Points to Origin(Medium)

Day30- K Closest Points to Origin(Medium)

问题描述:

We have a list of points on the plane. Find the K closest points to the origin (0, 0).

(Here, the distance between two points on a plane is the Euclidean distance.)

You may return the answer in any order. The answer is guaranteed to be unique (except for the order that it is in.)

从一个数组中找出K个离原点最近的点。距离用欧式距离。

Example:

Example 1:

Input: points = [[1,3],[-2,2]], K = 1
Output: [[-2,2]]
Explanation: 
The distance between (1, 3) and the origin is sqrt(10).
The distance between (-2, 2) and the origin is sqrt(8).
Since sqrt(8) < sqrt(10), (-2, 2) is closer to the origin.
We only want the closest K = 1 points from the origin, so the answer is just [[-2,2]].
Example 2:

Input: points = [[3,3],[5,-1],[-2,4]], K = 2
Output: [[3,3],[-2,4]]
(The answer [[-2,4],[3,3]] would also be accepted.)

解法:

先求所有点到原点的欧式距离,然后讲求得的距离作为Key,点作为值存储到一个字典中。然后对这个字典按key值排序,然后将所有的值有序取出,然后我们取前K个值就可以了。

class Solution:
    def kClosest(self, points: List[List[int]], K: int) -> List[List[int]]:
        result_list = collections.defaultdict(list)
        for i in points:
            temp = pow(i[0],2) + pow(i[1],2)
            result_list[temp].append(i)
        sort = sorted(result_list.keys())
        result = []
        for i in sort:
            for j in range(len(result_list[i])):
                result.append(result_list[i][j])
        return result[:K]

时间复杂度为O(nlogn),空间复杂度为O(n)

解法二:

其实也是先排序然后返回前K个值的方法,只不过代码优化了下。

class Solution:
    def kClosest(self, points: List[List[int]], K: int) -> List[List[int]]:
        points.sort(key = lambda P: P[0]**2 + P[1]**2)
        return points[:K]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值