Day30- K Closest Points to Origin(Medium)
问题描述:
We have a list of points on the plane. Find the K closest points to the origin (0, 0).
(Here, the distance between two points on a plane is the Euclidean distance.)
You may return the answer in any order. The answer is guaranteed to be unique (except for the order that it is in.)
从一个数组中找出K个离原点最近的点。距离用欧式距离。
Example:
Example 1:
Input: points = [[1,3],[-2,2]], K = 1
Output: [[-2,2]]
Explanation:
The distance between (1, 3) and the origin is sqrt(10).
The distance between (-2, 2) and the origin is sqrt(8).
Since sqrt(8) < sqrt(10), (-2, 2) is closer to the origin.
We only want the closest K = 1 points from the origin, so the answer is just [[-2,2]].
Example 2:
Input: points = [[3,3],[5,-1],[-2,4]], K = 2
Output: [[3,3],[-2,4]]
(The answer [[-2,4],[3,3]] would also be accepted.)
解法:
先求所有点到原点的欧式距离,然后讲求得的距离作为Key,点作为值存储到一个字典中。然后对这个字典按key值排序,然后将所有的值有序取出,然后我们取前K个值就可以了。
class Solution:
def kClosest(self, points: List[List[int]], K: int) -> List[List[int]]:
result_list = collections.defaultdict(list)
for i in points:
temp = pow(i[0],2) + pow(i[1],2)
result_list[temp].append(i)
sort = sorted(result_list.keys())
result = []
for i in sort:
for j in range(len(result_list[i])):
result.append(result_list[i][j])
return result[:K]
时间复杂度为O(nlogn),空间复杂度为O(n)
解法二:
其实也是先排序然后返回前K个值的方法,只不过代码优化了下。
class Solution:
def kClosest(self, points: List[List[int]], K: int) -> List[List[int]]:
points.sort(key = lambda P: P[0]**2 + P[1]**2)
return points[:K]