数学之美
文章平均质量分 66
这里精选有关数学, 算法, 机器学习的优秀内容
xosg
这个作者很懒,什么都没留下…
展开
-
SVG实现小苹果图标
用SVG实现的一个小苹果图标,只有半KB,小巧玲珑,由3块组成(按照z-index排序):叶子(棕)、苹果(红)、高光(白)。其中叶子和高光共用了一个,但颜色不同。如果通过二进制的svg格式可以压缩到更小,但目前技术尚不成熟。原创 2022-10-11 23:45:00 · 314 阅读 · 0 评论 -
demo 让你的三维动起来
本文主要介绍了https://github.com/inveta/demo的动态生成方法,包括编辑器静态初始化、蓝图动态生成、像素流字符串动态生成。原创 2022-09-27 23:45:00 · 876 阅读 · 3 评论 -
POI特效 市场调研
绕Z轴自转的模型就高级一点了,视觉效果上比动图更真实,但需要消耗建模和渲染的成本,不过POI常用的小模型都有一些共同的特点,比如三角面少、自发光、使用顶点色渲染、绕竖轴自转,原点位于底部。使用顶点着色(支持透明)省去了UV贴图,大大降低了模型的体积,每个模型只有20~50KB,平均三五百个面片+顶点。但这种毕竟是静态的POI图标,有时候为了更好的视觉体验,需要一些动态的POI特效,这就需要全新的设计思路了,我们考察了市面上一些流行的三维可视化厂家,比如51world的SuperAPI(运动选择旋转模式。..原创 2022-07-22 23:45:00 · 649 阅读 · 0 评论 -
UE5升级指南
Part1UE5简介UE5(虚幻引擎5)于2022年4月初发布正式版,告别了面世十几年的UE4。UE5最大的特点是自动化:将UE4中许多需要手动设置的优化方法变成了一键开启、开箱即用的功能。UE5尽可能地将图形学和美术分离,让美术师免于理解复杂的图形学知识。下面分享一下最近1个月研究UE5的心得。Part2虚拟网格体(Nanite)UE5不仅将UE4中繁琐的LoD设置给自动化,而且采用了全新的内部格式来实时调度三角簇,可以理解为“单个物体内部的HLoD”,而物体之间的HLoD则基于世界分原创 2022-05-11 12:31:06 · 2675 阅读 · 0 评论 -
思科EIGRP协议终极解析
EIGRP的思维导图 如图,我想采用一种全新的“框架式”教学法,或者叫“盖楼”,旨在利用抽象的外部接口,分类分层地介绍各个机制之间的关系。其实任何学习到最后都是这个样子,比如数学,刚开始你要认识各种数学定理并且证明他们,之后你就能灵活运用这些定理去解决更高层的问题,而不用再去思考那些定理的证明方法,实现“屏蔽底层的复杂度”。如果你学完一个系统原创 2018-01-05 11:06:04 · 1818 阅读 · 1 评论 -
分享一款在线贝塞尔曲线调试器
前言 介于很多前端小伙伴对于css3的动画的运动速度不太理解,今天就分享一款可以在线调试的贝塞尔曲线,附上链接,http://cubic-bezier.com/#.17,.67,.83,.67规则1.ease对应自定义cubic-bezier(.25,.01,.25,1),效果为先慢后快再慢;2.linear对应自定义cubic-bezier(0,0,1,1),效果...转载 2018-09-25 13:49:04 · 5112 阅读 · 0 评论 -
【转载】文化的基本单位:模因
转载自CSDN公众号。本文没有什么深度,全是漫画,通俗易懂,但作为我即将开始的《白话进化论》系列的铺垫,它还是很有意义的。流浪的狗和一坨屎有关 “模因” 的故事话说很久以前,有一个老头名叫洪七公,他有10个儿子,10个女儿。洪七公拥有这么多的子嗣,个体的基因能...转载 2020-03-30 19:21:32 · 1459 阅读 · 2 评论 -
信息与熵【上】生命以信息为食
也不知道这样理解对不对,管他呢,只要能重塑大脑连接,减少记忆成本就行记得母校有一年的研究生入学考试中,《概率论》最后一道送命题大概是这样的:学渣小明在做一道选择题,由于小明完全不会做只能...原创 2020-03-04 21:02:17 · 1129 阅读 · 3 评论 -
数学3大分支:代数、几何、分析 //转载
数学发展到现在,已经成为科学世界中拥有100多个主要分支学科的庞大的“共和国”。大体说来,数学中研究数的部分属于代数学的范畴;研究形的部分,属于几何学的范筹;沟通形与数且...转载 2019-11-07 16:15:54 · 12736 阅读 · 2 评论 -
伟大的数学家,怎么都诞生在法国?
笛卡尔、韦达、帕斯卡、费马、拉格朗日、拉普拉斯、达朗贝尔、勒让德、蒙日、彭赛列、柯西、傅里叶、庞加莱、伽罗华、格罗藤迪克……这些令无数大学生“闻风丧胆”的数学家,基本上...转载 2019-07-16 13:26:05 · 2617 阅读 · 1 评论 -
10大反直觉的数学结论
转载地址:http://www.sohu.com/a/202163586_70181410大反直觉的数学结论我是谁?我在哪?反直觉的事实有时候甚至骗过了最好的数学家。有些数学结论,往往会跟我们生活中的经验背道而驰。今天,超模君就来跟大家讲讲10个反直觉的数学结论吧。 1生日悖论假设房间里有23人,那么两个人生日是同天的概率将大于50%。我们很容...转载 2019-01-30 13:13:33 · 701 阅读 · 0 评论 -
★用辩证数学解答“缸中之脑”
缸中之脑知道“我不是缸中之脑”吗? ——怀疑主义的普特南式解答议评 2015年12月21日 11:05 来源:《自然辩证法通讯》2006年第2期 作者:曹剑波 原题为:缸中之脑知道“我不是缸中之脑”吗? 怀疑主义问题是认识史上最重要、最为人关注的问题之一。康德把怀疑主义问题的未决看作是“哲学的耻辱”([1],p.34);奎因原创 2018-01-05 11:04:40 · 2909 阅读 · 0 评论 -
★数学上最大的数是多少?
数学上最大的数是多少?怪罗科普 收藏(282) | 阅读(117678)人类已经使用数长达千年之久。普遍认为,数的概念最先源于史前人类开始使用手指进行计数。这最终演变成符号语言,然后在沙子、墙壁和木头等物体上作标记。我们已经向前发展了一大步,现在我们使用计算器和计算机来计算大型数字。我们甚至还给没有极限的数起了专门的称法,那数学中最大的数是多少?不那么明显那么,...转载 2018-01-05 11:04:08 · 6687 阅读 · 1 评论 -
【数学题】概率问题之-学生的生日
数学老师和班主任打赌说班上的40名同学中,至少有两个同学生日相同,输家要请对方吃大餐。班主任信心满满准备痛宰对方一顿,毕竟一年有365天,自己赢面居多。然而事实真如他所想的那样吗?数学老师胜的概率为1-(364/365)*(363/365)*……*(316/365).不妨在电脑上编一个C语言的循环语句来解决:#includeint main(){int i,a=364;float p=1;for(原创 2017-09-16 14:26:43 · 2372 阅读 · 1 评论 -
【数学题】有趣的倍数问题
假设一个礼堂里有足够多的桌子,若干个人。然后有以下情况:如果3个人一桌,多2人。5人一桌,多4人。7人一桌,多6人。9人一桌,多8人。如果11人一桌,正好。请问这屋里至少多少人?答案:2519个人。分析:设有n人。观察数据有: n+1是3、5、7、9的倍数,n还是11的倍数。 所以n+1=(5*7*9)N即n=315N-1,又n=11M。(N、M为正整数) 凑得N=8原创 2017-09-16 14:26:26 · 1342 阅读 · 0 评论 -
【数学题】男女的比例
在一个重男轻女的国家里,每家每户都想生男孩。若一户人家生了一个男孩,就不会再生了。若一家生了一个女孩,便会再生一个,直到生下男孩为止。请问这个国家(有无限多的人民)的男女比例是多少?答案:1比1。在某一户人家中,孩子的各种情况的概率:(n趋向无穷)1男 1/21女1男 (1/2)的平方2女1男 (1/2)的立方……n女1男 (1/2)的n+1方要求国家的男女比例,即求一个家庭中男女比例的数学原创 2017-09-16 14:26:23 · 1963 阅读 · 0 评论 -
【数学题】如何合理分钱?
简单的数学题:A、B、C一起出游,A带了3瓶水,B带了4瓶水,C没带水。三人均分了这7瓶水,最后C付给A、B共1元4角。为体现完全公平的原则,A、B该怎么分钱?(单位水对应单位钱)答案:A得4角,B得1元分析:每人喝了7/3瓶水,7/3瓶水的价钱是14角,则每瓶水6角钱。 A带了3瓶水,却只喝了7/3瓶水,剩下2/3瓶水换成了钱=4角,同理B得10角。同类型题:有一堆垃圾要由张王李三户人原创 2017-09-16 14:26:17 · 1052 阅读 · 0 评论 -
【数学题】新倍数问题
求出1,2,3,4,5,6,7,8,9,10的最小公倍数。首先排除1,2,3,4,5.(因为8,9,10的存在)。6和9的最小公倍是18,7和8最小公倍是56。18和10的最小公倍是90.此时只剩下56,90。56=2*2*2*7,90=2*3*3*5,最大公因数是2。所以56和90的最小公倍数是56*90/2=2520。求一个整数x,被N除余n;被M除余m。则可以写成x=(k1)N+n,x=(k原创 2017-09-16 14:26:11 · 733 阅读 · 0 评论 -
【数学题】几点回到家?
简单的数学题:老王每天5点下班后都会准时出现在公司门口,等着他老婆开车来接他回家。老婆也会准时到那里。有一天老王提前1小时下班,他就自己沿路走回家。途中遇到了开车来接他的夫人,然后坐车回家,结果比通常提前10分钟到家。请问:老王在坐上汽车之前已经走了多长时间?答案:55分钟。设步行速度v,车速V,老王走的路程为x,走过的时间为x/v.提前60分钟下班却只提前10分钟到家。中间浪费的50分钟=x/v原创 2017-09-16 14:26:08 · 902 阅读 · 0 评论 -
【数学题】倍数问题
A和B玩跳台阶游戏,A每一步跳两个台阶,最后剩下一个台阶;每步跳3个台阶,最后剩下两个台阶。B算了一下,如果每步跳6个台阶,最后剩5个台阶,如果每步跳7个台阶则一个不剩,到底有多少个台阶?设有x个台阶,由前三个条件得x+1=6N(N=1,2,3……)第四个条件为x=7M(M=1,2,3……)则x+7是6、7的倍数,x=42k-7(k=1,2,3……)原创 2017-09-16 14:25:37 · 1017 阅读 · 0 评论 -
【数学题】割草工人
简单的数学题:有两块草地,大草地面积是小草地的2倍。现有一群人去割草,上半天全部在大草地工作,下半天一半的人还在大草地工作,另一半转到小草地工作。晚上收工时,大草地已经割完,小草地还剩一小块。第二天,其中一个人花了一整天的时间就割完了那块地。请问,总共有多少人?答案:8人提示:人数*时间=工作量原创 2017-09-16 14:25:34 · 875 阅读 · 0 评论 -
【数学题】猫和老鼠
一只猫发现它前方有一只老鼠在奔跑,猫便紧追。猫的步子大,它跑5步的路程,老鼠要跑9步。但是老鼠的动作频率快,猫跑2步的时间,老鼠能跑3步。请问:按照这种速度,且两者在同一条直线上,猫能追得上老鼠吗?答案:能。分析:猫与老鼠的速度之比为(9*2):(5*3)=6:5原创 2017-09-16 14:25:04 · 2059 阅读 · 0 评论 -
用辩证数学解答“缸中之脑”
缸中之脑知道“我不是缸中之脑”吗?——怀疑主义的普特南式解答议评 原题为:缸中之脑知道“我不是缸中之脑”吗? 怀疑主义问题是认识史上最重要、最为人关注的问题之一。康德把怀疑主义问题的未决看作是“哲学的耻辱”;奎因则指出:“休谟的困境就是人类的困境。”既为耻辱,则不能不设法消除;既为困境,则不能不设法解决。国内学术界对西方古代和近代怀疑主义虽有较深入、较全面的研究...原创 2017-05-04 10:17:50 · 1164 阅读 · 0 评论 -
★数学上最大的数是多少?
数学上最大的数是多少?怪罗科普 收藏(282) | 阅读(117678)人类已经使用数长达千年之久。普遍认为,数的概念最先源于史前人类开始使用手指进行计数。这最终演变成符号语言,然后在沙子、墙壁和木头等物体上作标记。我们已经向前发展了一大步,现在我们使用计算器和计算机来计算大型数字。我们甚至还给没有极限的数起了专门的称法,那数学中最大的数是多少?不那么明显那么,最大的数是原创 2017-05-04 10:17:18 · 727 阅读 · 0 评论 -
试图将一个数学定理证明到最底层的数哲原理...
最近正在研究高数上的微积分一章, 目的是为了以后做机器学习和深度学习做准备, 但是2年没碰数学的我似乎连一些高中数学的问题都搞不定了, 于是选择了一个挑战任务: 证明切割线定理, 但是不同的是, 我试图不依赖其他的定理来证明它, 因此整个流程是这样的: 首先要证明切割线定理就要证明弦切角定理, 然后证明弦切角又需要二倍角(圆周角)定理的支持, 证明二倍角只需要知道三角形内角和等于180°...原创 2019-03-01 14:17:39 · 1705 阅读 · 1 评论 -
深入探讨三角函数的命名规范
你知道正弦函数Sine为什么叫正弦吗?除此之外, 正切, 正割, 余函数为什么取这些奇怪的名字, 非常难记忆?最近研究机器学习, 得知ML需要大量的数学知识做支撑, 所以回去巩固了一下高等数学, 在三角函数这一部分得到了一些突破, 就是三角函数有什么几何意义? 三角函数名字肯定不是乱取的,因为数学是非常严谨的,其实, 弦, 切, 割指的就是某一个弦长, 某一个切线段长, 以及一个割线段...原创 2019-02-25 15:13:43 · 6138 阅读 · 4 评论 -
【随笔】一个可爱的圆函数模型
圆函数的记忆技巧今天教大家一个超可爱的三角函数的记忆模型。自创了一个关于所有单倍角三角函数(圆函数)之间的关系,仔细观察下面这张图:一个简单的6边分形图,包括周围6个圆函数和中间的常函数1。我们常用的基本上是图中左上角的3个:sin,cos,tan,右下角的与之对应的3个不常用但也非常重要的三角函数。为啥我会想到这样一个分形图形呢?是因为三角函的单纯性,圆函数是我们从初中到大...原创 2019-04-07 14:21:40 · 1826 阅读 · 1 评论 -
数学与软件
学了数学文化与思维的课程让我开始对数学有了新的认识,我开始不单单以工具的角度看待数学,也开始从思维的角度理解数学。而反思我自己的专业也是一样,软件在外行眼中也许就是一个使用的工具,他们不会去考虑为什么会有这个软件,这个软件是怎么想到的,是怎么实现的。对于我们软件的开发者软件不只是一个工具更是一种思维的创新与体现,作为开发者,相对于工具的使用更需要关注的是一个软件背后的想法与思考。数学与...转载 2019-03-25 09:23:47 · 642 阅读 · 0 评论 -
数学的深渊 (搞笑)
原创 2019-03-13 12:44:05 · 17705 阅读 · 3 评论 -
为啥E进制计算机的效率最高?
任何一套计算机技术, 只要有人开发有人用, 它一定是有数学理论基础作支撑的, 比如SQL语言就是基于关系代数和集合论, 俄罗斯曾经研究过3进制计算机也是因为数学证明3进制比2进制理论上效率要高, 因为3比2更接近自然常数'e' (2.71828....).很久以前,我在一本《计算机应用基础》教程上看到类似这样的描述:“理论上e进制是最优的进制,考虑到取整数,三进制是实际可用的最优进制,但是考虑...原创 2019-03-11 11:30:04 · 25032 阅读 · 2 评论 -
记录一次Stack上关于"数学之美"的brainstorm
math.stackexchange.com是stackExchange上一个和数学有关的论坛, 有点类似我们的贴吧, 当然质量肯定不可相提并论的.Mathematics Stack Exchange is a question and answer site for people studying math at any level and professionals in rela...原创 2019-03-05 09:52:45 · 2796 阅读 · 1 评论