放苹果问题 搜索解法

把m个同样的苹果放在n个同样的盘子里,允许有的盘子空着不放,问共有多少种不同的分法?(用K表示)5,1,1和1,5,1 是同一种分法。

样例输入:
1
7 3
样例输出:
8

感觉放苹果问题还是挺有意思的,好几种思想都能解。

#include<iostream>
using namespace std;

int a[1001] = {1};
int m, n, tot;

void search(int i, int s)
{
	for(int j = a[i-1]; j <= s; j++)//当前数j要大于等于前1位数,且不超过m
		if(j <= m)
		{
			a[i] = j;
			s -= a[i];
			if(s == 0 && i <= n)
				tot++;
			else 
				search(i+1, s);
			s += a[i];
//			cout << a[1] << a[2] << a[3] << a[4] << a[5] << a[6] << a[7] << endl;
//			cout << s << endl; 
		}
} 

int main()
{
	int t;
	cin >> t;
	for(int i = 0; i < t; ++i)
	{
		tot = 0;
		cin >> m >> n;
		search(1, m);
		cout << tot << endl;
	}
	return 0;
} 

函数search(int i, int s)   j表示第j个盘子,s表示要分配的苹果数,数组a[j]表示第j个盘子放的苹果数。

这种解法的关键还是备注的地方,即每次放的苹果数是大于等于上次放的数目。
也是通过j = a[i-1]; a[j] = j; 来实现。
i表示盘子数目的同时也意味他受n的约束,只有满足小于等于n才算一次有效的放法。(这点也是用搜索思想解自然数拆分问题与解本题的不同之处)

逻辑上for循环里的if判断我觉得是可有可无,因为j在循环里只能小于等于s,而s永远小于等于m。(我自己code的时候是没敲出if的)
也是当时想不通为什么答案要加if(j <= m) 就对实现的步骤多测试了下。加了两条测试语句,并手写输出结果,来对比运行逻辑。对回溯过程的认识还是有帮助的。


手写输出时,一次运行中

search(7,1)//search(int i, int s)
{
    for(int j = a[6]; j <= 1; j++)//for(int j = a[i-1]; j <= s; j++)
    ...
    else
       search(8,1);
}

函数当前的参数的值(7,1),与要调用的参数(8,1)之间的关系需注意。
for循环中的j的初值,以及是否满足<=s的均需要注意。
每次回溯回来,s+=a[i]后,j++。

 

另外该代码可小小优化下:

#include<iostream>
using namespace std;

int a[1001] = {1};
int m, n, tot;

void search(int i, int s)
{
	for(int j = a[i-1]; j <= s; j++)
		if(i <= n)
		{
			a[i] = j;
			s -= a[i];
			if(s == 0)
				tot++;
			else 
				search(i+1, s);
			s += a[i];
		}
} 


int main()
{
	int t;
	cin >> t;
	for(int i = 0; i < t; ++i)
	{
		tot = 0;
		cin >> m >> n;
		search(1, m);
		cout << tot << endl;
	}
	return 0;
} 

 

©️2020 CSDN 皮肤主题: 1024 设计师:上身试试 返回首页