最近科技界又爆出了一个大新闻,许多人可能已经注意到了。那就是76岁的计算机科学家Geoffrey Hinton,同时也是全球知名的人工智能专家,与John J. Hopfield一同荣获了2024年诺贝尔物理学奖,以表彰他们在人工神经网络和机器学习领域的开创性发现和发明。
上一次Hinton成为焦点是在2023年5月,当时75岁的他宣布从谷歌退休。此次获奖消息一出,再次在科技界引起了广泛的关注和讨论,许多人感叹“AI的神奇力量”、“人工智能终于被认可为一门科学”。
对于从事AI和机器学习领域的学生和专业人士来说,Hinton的名字应该非常熟悉。他被誉为“神经网络之父”、“深度学习的奠基人”、“人工智能的教父”,在这一领域一直是最受尊敬的权威之一。五年前,Hinton获得了2018年图灵奖,至此,他成为了同时拥有图灵奖和诺贝尔奖的双料得主。
大多数人是因为近年来AI的热潮才开始了解Hinton,但他的人生经历同样充满了戏剧性。1947年,Geoffrey Hinton出生在英国温布尔登的一个知识分子家庭。他的父亲Howard Everest Hinton是一位研究甲壳虫的昆虫学家,母亲Margaret Clark是一名教师。他的高曾祖父George Boole是著名的逻辑学家,也是现代计算科学基础布尔代数的发明者,叔叔Colin Clark则是一位著名的经济学家。Hinton家族中许多成员在学术和研究领域都有很高的成就。在这样的家庭环境中成长,Hinton所承受的成长压力也是巨大的。
想象一下,如果你出生在这样的家庭,周围的亲戚和朋友都是科研界的佼佼者,你稍微表现得平庸一些,就可能被视为废物。
在《深度学习革命》一书中提到,Hinton在十多岁时帮助母亲移动取暖器时腰部受伤,导致他后来疼痛难忍,无法坐下。1970年,23岁的他获得了实验心理学学位。由于找不到科研的意义,他转行成为了一名木匠,持续了半年。当吴恩达问他为什么不再做木匠时,Hinton回答说,有一天他看到另一位木匠的精湛技艺,与自己的手艺相比,他意识到自己永远无法成为一名出色的木匠。于是,他重返科研领域。在投身AI研究之前,Hinton的本科学习了生理学、物理学、哲学,并最终以心理学学位毕业。这并非因为他天赋异禀,而是因为他在前几门学科中未能找到解释人类思维的答案。
直到1978年,他获得了爱丁堡大学的人工智能博士学位,那时他已经31岁了。在那个年代,从事深度学习研究可以说是一项孤独的工作。当时的AI正处于理论发展的初期,深度学习在很长一段时间内都未受到重视,甚至几次遭遇寒冬。当时AI正处于理论阶段,科学界分为统计学派和Hinton研究的深度学习派。绝大多数科研者都支持统计学派,认为深度学习派没有未来。这意味着你的科研方向并没有多少人关注,也得不到其他人的认可,你在做一件社会主流认为没有意义的事情。那时并没有现在强大的GPU等算力资源,也没有ChatGPT等惊人的模型,只有Hinton的满腔热情。Hinton所主张和研究的深度学习派也难以获得关注和认可。面对冷漠、质疑甚至反对,只有纯粹的信仰和热爱才能让他在这一领域深耕数十年,直到AI时代的到来。而这一切,Hinton都做到了。
Hinton主要研究神经网络和机器学习,在AI领域做出了许多重要贡献,其中最著名的是他在神经网络领域的研究。他在20世纪80年代就开始研究反向传播算法,并将其应用于神经网络模型的训练中。这一算法在语音识别、图像识别和自然语言处理等领域得到了广泛应用。此外,Hinton还在卷积神经网络、深度置信网络、递归神经网络、胶囊网络等领域做出了重要贡献。2013年,Hinton加入谷歌,将机器学习技术带入谷歌,并将其融入谷歌的多项业务中。2019年3月,ACM宣布了2018年度图灵奖得主。图灵奖是计算机领域的最高国际奖项,被誉为“计算机界的诺贝尔奖”。Hinton与蒙特利尔大学计算机科学教授Yoshua Bengio和Meta首席AI科学家Yann LeCun因研究神经网络而共同获得了该年度的图灵奖,以表彰他们在该领域所做的杰出贡献。此外,Hinton在他的学术生涯中发表了数百篇论文,提出了许多重要的理论和方法,涵盖了人工智能、机器学习、神经网络、计算机视觉等多个领域。他的论文被引用次数惊人,对这些领域的研究和发展产生了重要影响。
除了在人工智能领域的高深造诣,Hinton还是一位杰出的教育者。为了扩大深度学习的影响力,他曾在多伦多大学成立研究中心,专门培养对相关研究感兴趣的年轻人,如今AI界的许多领军人物都是他的学生。Hinton培养了许多优秀的学生,其中许多人被苹果、谷歌等硅谷科技巨头挖走,在各自公司领导人工智能相关领域的研究。
其中最典型的是Ilya Sutskever,他是Hinton的学生,也是著名的OpenAI公司的联合创始人和首席科学家。
10岁前,他出生在科研氛围浓厚的家族,父母的教育要求很高。20岁前,他背部受伤,导致后来连日常活动和出行都成为难题。30岁前,他在本科阶段辗转多个专业,毕业后迷茫地去当木匠,发现自己没有当木匠的天赋,于是去读博士。博士研究的方向和导师的方向不一致,只能自己摸索。接下来几十年,深度学习不温不火,甚至几次进入寒冬。他没有放弃,还自创门派,接收世界各地的学生,给予他们大量的学术支持。可以说Hinton完全是自己闯出来的,他有资格被称为AI之父。
这就像你辛辛苦苦,寒窗苦读30年,获得了博士学位。但不好意思,社会没有相关的就业前景,也没有相关的研究方向,也没人对你研究的内容感兴趣。很难想象Hinton是有多大的热爱和坚持,才能在深度学习领域坚持近半个世纪,直到AI时代的来临。欧洲没有人研究深度学习,他就去美国、日本等地寻找同盟。为了推广深度学习领域,他在多伦多大学成立了研究中心,专门接收对此领域感兴趣的年轻人,现在AI界的许多领军人物都是他的弟子。如果以结果论来说,你会觉得Hinton走在正确的道路上,但如果你以10年为一个周期来审视Hinton的一生,你会发现大多数时期他和普通人并无二致,只是他有着异常坚定的信念。
如果你回顾他的一生,你会发现他大半辈子都在钻研自己认为正确的东西,尽管很长一段时间遭到大量的质疑,但他都坚持下来了。我们知道Hinton是因为他出名了,但实际上还有很多像他一样追梦的人,命运却与他不同。例如梵高的作品在他死后才逐渐被人认识,梵高去世时才37岁,你认为梵高生前对自己的评价是怎样的?没有意义?一事无成?丢人?如果Hinton和梵高都非常在意别人的眼光和评价,我们可能就等不到AI时代的到来,我们就无法欣赏到梵高那些伟大的作品。意义,从来都是自己赋予的。与其担心是否丢人,不如想想还有什么是自己想做的。