工业4.0中医疗物联网的机器学习安全与可持续性
1. 引言
医疗物联网在医疗行业引发了重大变革。在机器学习(ML)出现之前,患者只能通过上门拜访、电话或短信与医生沟通,专家或急诊诊所难以持续筛查患者健康状况并给出恰当建议。如今,不仅可以远程监测患者健康,还能借助机器人手术和远程听诊等技术进行远程治疗。研究表明,由于工业4.0技术(人工智能和物联网)的助力,医疗制造组织的效率提高了82%。
不过,医疗行业包含大量敏感信息,因此需要设计更安全、可持续的框架。进行远程手术需要高数据速率,安全威胁可分为针对连接的手术机器人的直接攻击和针对连接设备的间接攻击。若操作员在远程站点附近,可减少或缓解因大延迟导致的功能下降问题。5G网络能处理更高的数据量,同时保持可靠性并减少延迟问题,有助于提升移动机器人手术的可及性。为应对医疗物联网(IoMT)的安全问题并增强工业4.0物联网特性的可持续性,有必要应用先进的ML技术。
2. 机器学习原理与应用
机器学习作为人工智能的一种形式,无需明确编程即可从信息和经验中学习。在重复数据分析和生成可操作信息方面,ML是IoMT的关键组成部分,尤其在云计算和雾计算等处理节点。近年来,物联网和IoMT领域出现了许多引人注目的ML应用。为解决IoMT安全问题,可使用监督学习、无监督学习和半监督学习这几类主要的ML算法。
为提高制造业的可持续性,可运用深度学习(DL)和绿色技术的概念,这也有助于从核心层面增强机器的安全性。基于DL的模型和技术有利于处理和分析制造数据,提供复杂的分析能力,还能提升行业的可持续发展绩效。绿色计算是一个关键理念,有望改变数字生活的方方面面。虽然有众多降低能耗的策略,但回收利用和可重用性是两个重要问
订阅专栏 解锁全文

被折叠的 条评论
为什么被折叠?



