回溯法解决0-1背包问题

代码和分析如下:

#include<iostream>

using namespace std;
//回溯法求解0-1背包问题;

//本题为了方便计算结果,已输入固定数值 
int value[8]={11,21,31,33,43,53,55,65};//物品的价值 
int weight[8]={1,11,21,23,33,43,45,55};//物品的重量 
int M=110;//包重 
double wv[8];
int y[8];
//数值
 
 
void wv_max(int weight[],int value[],double wv[],int n);
void banapl(int x[],int M,int n,int *fv,int *fw);
double bound(int v,int w,int k,int M,int n);
void swap(int *a,int *b);
void dswap(double *a,double *b);

int main(){
	
	int n=8;
	int i,j;
	M=110;
	for(int i=0;i<n;i++){
		wv[i]=value[i]*1.0/weight[i];
	}

	wv_max(weight,value,wv,n);
	int fw=0,fv=0;
	banapl(y,M,n,&fv,&fw);
	cout <<"-----------------------------------"<<endl; 
	cout <<"数据编号    "<<"价值  "<<"重量 "<<"价值/重量"<<endl;
	cout <<"-----------------------------------"<<endl; 
	for(int i=0;i<n;i++){
		
		cout <<"第"<<i+1<<"组数据:| "<<value[i]<<" |  "<<weight[i]<<"  |  "<<wv[i]<<endl;
		
	}
	cout <<"-----------------------------------"<<endl; 
	cout <<"各物品占用情况: ";
	for(int i=0;i<n;i++){
		cout <<y[i]<<"   ";
	}
	cout<<endl;
	cout <<"总重量: "<<fv<<"   总价值: "<<fw<<endl;
	
	return 0;
}

//使用冒泡排序 

void wv_max(int weight[],int value[],double wv[],int n){
	for(int i=0;i<n-1;i++){
		for(int j=n-2;j>=0;j--){
			if(wv[j]<wv[j+1]){
				swap(weight[j],weight[j+1]);
				swap(value[j],value[j+1]);
				dswap(&wv[j],&wv[j+1]);
			}
		}
		
	}
}

void banapl(int y[],int M,int n,int *fv,int *fw){
	int cw=0,cv=0;//cw代表当前重量,cv代表当前价值 
	int k=0;
	int x[8]={0}; //用来标记对应数组下标的物品是否放入背包 
	*fv=-1;       //进行初始化 
	while(true){
		while(k<n&&cw+weight[k]<=M){  //在包不超重的前提下对物品进行装载 
			cv=cv+value[k];
			cw=cw+weight[k];
			x[k]=1;
			k=k+1;
		}
		if(k>=n){
			*fw=cw;
			*fv=cv;
			for(int i=0;i<n;i++){
				y[i]=x[i];
			}
		}else{
			x[k]=0;
		}
		while(bound(cv,cw,k,M,n)<=*fv){  
//使用约束函数,一般情况下分数背包容量大于等于0-1背包,如果当前的分数背包容量都无法满足的话,只能回溯了 
	
			while(k!=0&&x[k]!=1){    //向上返回,返回到第一个装入包的物品位置上 
				k--;
			}
			if(k==0){
				return;
			}
			x[k]=0;    //进行回溯,向上返回,将上一个装入背包的物品取出,想象一下深度优先遍历 
			cw=cw-weight[k];
			cv=cv-value[k];
		}		
		k=k+1;
	}
}

double bound(int v,int w,int k,int M,int n){//约束函数,类似于分数背包 
	
	double b=(double)v; 
	int we=w;
	int i;
	for(i=k+1;i<n;i++){
		we=we+weight[i];
		if(we<M){
			b=b+value[i];
		}else{
			return b+(1-(we-M)*1.0/weight[i])*value[i];    //类似于分数背包 
		}
	}
	return b*1.0;
}

void swap(int *a,int *b){
	int temp;
	temp=*a;
	*a=*b;
	*b=temp;
}
void dswap(double *a,double *b){
	double temp;
	temp=*a;
	*a=*b;
	*b=temp;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值