题目:
给定一个无序数组,求出需要排序的最短子数组的长度。
例如:arr={1,5,3,4,2,6,7}返回4,因为只有[5,3,4,2]需要排序。
思路:
解决这个问题可以在时间复杂度为O(N)、额外空间复杂度为O(1)完成。
初始化变量noMinIndex=-1,从右向左遍历,便利的过程记录右侧出现过的数的最小值,记为min。假设当前数为arr[i],如果arr[i]>min,说明如果要整体有序,min值必然会移到arr[i]的左边。用noMinIndex记录最左边出现这种情况的位置。如果遍历完成后,noMinIndex的值依然为-1,说明从右向左始终不升序,原数组本来就有序,直接返回0,即完全不需要排序。
接下来从左向右遍历,遍历的过程记录左侧出现过的数的最大值。记为max。假设当前数为arr[i],如果arr[i]
程序实现
/*
给定一个无序数组,求出需要排序的最短子数组的长度。
例如:arr={1,5,3,4,2,6,7}返回4,因为只有[5,3,4,2]需要排序。
*/
#include<iostream>
using namespace std;
int getMinLength(int *arr,int len)
{
if (len < 2)
return 0;
int min = arr[len - 1];
int noMinIndex = -1;
for (int i = len - 2; i >= 0; i--)
{
if (arr[i]>min)
{
noMinIndex = i;
}
else
{
min = (min < arr[i] ? min : arr[i]);
}
}
if (-1 == noMinIndex)
return 0;
int max = arr[0];
int noMaxIndex = -1;
for (int i = 1; i < len; i++)
{
if (arr[i] < max)
noMaxIndex = i;
else
max = (max>arr[i] ? max : arr[i]);
}
return noMaxIndex - noMinIndex + 1;
}
int main()
{
int arr[] = { 1, 5, 3, 4, 2, 6, 7 };
int len = sizeof(arr) / sizeof(arr[0]);
int res=getMinLength(arr,len);
cout << res << endl;
system("pause");
}