[ 扩展BSGS ] BZOJ1467

本文介绍了一种解决离散对数问题的有效算法——Baby Step Giant Step (BSGS)算法,并提供了一个C++实现示例。该算法适用于求解形如a^x ≡ b (mod p)的问题,其中a、b、p已知,需找到x的值。

模板题

#include<map>
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
int k,n,m,p;
int x,z,s,cnt,d;
bool f;
map<int,int>M;
int Gcd(int x,int y){
    return !y?x:Gcd(y,x%y);
}
inline int ex_bsgs(int a,int b,int p){
    if(b==1)return 0;
    int s=ceil(sqrt(p)),cnt=0,d=1;
    while(1){
        int g=Gcd(a,p);
        if(g==1)break;
        if(b%g)return -1;
        b/=g;p/=g;d=1ll*d*(a/g)%p;cnt++;
        if(b==d)return cnt;
    }
    M.clear();
    int t=b;
    for(int i=0;i<=s;i++,t=1ll*t*a%p)M[t]=i;
    t=a;
    for(int i=1;i<s;i++)t=1ll*t*a%p;
    int Res=d;
    for(int i=1;i<=s;i++){
        Res=1ll*Res*t%p;
        if(M.count(Res))return i*s-M[Res]+cnt;
    }
    return -1;
}
int main(){
    while(1){
        scanf("%d%d%d",&x,&z,&k);
        if(!x&&!z&&!k)break;
        int t=ex_bsgs(x,k,z);
        if(t==-1)puts("No Solution");else printf("%d\n",t);
    }
    return 0;
}
内容概要:本文详细介绍了一个基于MATLAB实现的线性回归(LR)电力负荷预测项目实例,涵盖了从项目背景、模型架构、算法流程、代码实现到GUI界面设计的完整开发过程。项目通过整合历史负荷、气象数据、节假日信息等多源变量,构建多元线性回归模型,并结合特征工程、数据预处理、正则化方法(如岭回归、LASSO)和模型评估指标(RMSE、MAPE、R²等),提升预测精度与泛化能力。文中还展示了系统化的项目目录结构、自动化部署脚本、可视化分析及工程集成方案,支持批量预测与实时滚动更新,具备高度模块化、可解释性强、部署友好的特点。; 适合人群:具备一定MATLAB编程基础,从事电力系统分析、能源管理、智能电网或数据建模相关工作的工程师、研究人员及高校师生。; 使用场景及目标:①应用于城市电力调度、新能源消纳、智能楼宇用能管理等场景下的短期负荷预测;②帮助理解线性回归在实际工程项目中的建模流程、特征处理与模型优化方法;③通过GUI界面实现交互式预测与结果可视化,支持工程落地与决策辅助; 阅读建议:建议结合提供的完整代码与GUI示例进行实践操作,重点关注数据预处理、特征构造、正则化调优与模型评估部分,深入理解各模块的设计逻辑与工程封装思路,以便迁移到类似的时间序列预测任务中。
【轴承故障诊断】基于SE-TCN和SE-TCN-SVM西储大学轴承故障诊断研究(Matlab代码实现)内容概要:本文介绍了基于SE-TCN(Squeeze-and-Excitation Temporal Convolutional Network)和SE-TCN-SVM的轴承故障诊断方法研究,重点针对西储大学(Case Western Reserve University, CWRU)的轴承数据集进行实验验证。研究通过构建SE-TCN模型提取振动信号中的深层时序特征,并利用SE模块增强关键特征通道的权重,从而提升故障识别精度。为进一步提高分类性能,还将SE-TCN提取的特征输入支持向量机(SVM)进行分类,形成SE-TCN-SVM混合模型。文中提供了完整的Matlab代码实现,便于复现实验结果。该方法在多工况、多故障类型下表现出良好的诊断准确率和鲁棒性,适用于工业设备的智能运维与早期故障预警。; 适合人群:具备一定信号处理和机器学习基础的研究生、科研人员及工程技术人员,尤其适合从事机械故障诊断、智能运维、工业大数据分析等相关领域的研究人员;熟悉Matlab编程者更易上手。; 使用场景及目标:①应用于旋转机械设备(如电机、风机、齿轮箱等)的轴承故障诊断;②作为深度学习与传统分类器结合的典型案例,用于教学与科研参考;③目标是提升故障诊断的自动化水平与准确性,推动智能制造与预测性维护的发展。; 阅读建议:建议读者结合提供的Matlab代码,逐步运行并理解模型构建、特征提取与分类流程,同时尝试在其他公开数据集上迁移应用,以加深对SE-TCN架构与故障诊断流程的理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值