ELK系列之四---如何通过Filebeat和Logstash优化K8S集群的日志收集和展示

前 言

上一篇文章《日志不再乱: 如何使用Logstash进行高效日志收集与存储》介绍了使用ELK收集通用应用的日志,在目前大多应用都已运行在K8S集群上的环境,需要考虑怎么收集K8S上的日志,本篇就介绍一下如何使用现有的ELK平台收集K8S集群上POD的日志。

K8S日志文件说明

一般情况下,容器中的日志在输出到标准输出(stdout)时,会以.log的命名方式保存在/var/log/pods/containerd_ID/目录中,例如:
在这里插入图片描述

K8S默认会在/var/log/containers/目录下创建软链接链接到/var/log/pods/containerd_id/目录下的具体日志文件,并规范化了软连接到文件名称,软链接的命名规范为

[podName]_[nameSpace]_[depoymentName]-[containerId].log

在这里插入图片描述

上面这个是deployment的命名方式,其他的会有些不同,例如:DaemonSet,StatefulSet等,不过所有的都有一个共同点,就是
每个软链接名称都是

*_[nameSpace]_*.log

所以根据这个日志特征我们可以很容易想到可以根据namespace来分别收集不同名称空间的日志。

一、日志收集架构

在ELK Stack组件中,有logstash和filebeat都可以实现日志收集,因为filebeat更轻量化,在K8S集群中通常使用filebeat来收集pod的日志,通过daemonSet控制器在每个K8S每个节点上运行一个filebeat来收集每个节点上的pod日志,filebeat官网图如下,filebeat输出支持对接Elasticsearch、Logstash、Kafka、Redis,本文选择对接Kafka,先缓存filebeat收集的日志,这样可以减少对ES的性能要求。
在这里插入图片描述

filebeat将收集的pod日志保存在K8S集群外的kafka集群,然后通过logstash再从kafka读取、过滤、整理之后再保存到elasticsearch集群中,然后通过kibana可视化管理日志,架构图如下
在这里插入图片描述

此架构中包含了K8S集群、Kafka集群、ElasticSearch集群,具体机器信息如下表

集群主机名IP地址应用
k8s-clusterk8s-master01172.16.1.65k8s-control
k8s-clusterk8s-node01172.16.1.66k8s-work
k8s-clusterk8s-node02172.16.1.67k8s-work
k8s-clusterk8s-node03172.16.1.68k8s-work
kafka-clusterkafka1172.16.1.11zookeeper/kafka/kibana
kafka-clusterkafka2172.16.1.12zookeeper/kafka
kafka-clusterkafka3172.16.1.13zookeeper/kafka
ES-clusteres1172.16.1.101elasticsearch
ES-clusteres2172.16.1.102elasticsearch
ES-clusteres3172.16.1.103elasticsearch
Logstashdeploy172.16.1.70Lostash

二、部署kafka集群

文章《在K8S上部署Cilium组件,看这一篇干货就够了》介绍了k8s-cluster集群的搭建过程,文章《可视化日志分析新境界:手把手教你搭建高效的ElasticSearch集群》介绍了ES-cluster集群的搭建过程

2.1、下载kafka

现在需要搭建kafka-cluster集群,在kafka-cluster集群的三个节点上下载最新版本kafka,下载二进制的压缩包
在这里插入图片描述

在每个节点上创建/opt目录,将kafka压缩包放到/opt目录下,解压并创建软连接
在这里插入图片描述

2.2、搭建zookeeper集群

最新版本kafka的taz包里已经包含了zookeeper的文件,所以在配置kafka之间先配置zookeeper,
三个几点上修改zookeeper配置文件如下
在这里插入图片描述

dataDir       #指定zookeeper的数据目录 
clientPort     #指定zookeeper的监听端口
maxClientCnxns   #限制最大client连接数

修改完成后,3个节点上同时开启zookeeper服务

~# /opt/kafka/bin/zookeeper-server-start.sh -daemon /opt/kafka/config/zookeeper.properties

在这里插入图片描述

查看三个几点都已监听2181端口即表示zookeeper集群搭建成功

2.3、搭建kafka集群

3个节点修改kafka的配置文件,如下图
在这里插入图片描述

broker.id                    #指定kafka的节点IP,每个节点都不相同
listeners                    #指定kafka的监听IP和端口,三个节点分别监听自己的IP
log.dirs                     #指定kafka的数据目录
zookeeper.connect            #指定zookeeper的连接地址,三个地址都写上

其他选项默认即可
3个节点同时启动kafka

~# /opt/kafka/kafka-server-start.sh -daemon /opt/kafka/config/server.properties

在这里插入图片描述

3个几点同时监听2181和9092两个端口即搭建成功

2.4、测试验证kafka

kafka有一个客户端工具OffsetExplorer,可链接kafka
在这里插入图片描述

创建连接时填入任意一个kafka节点的IP即可连接,连接显示绿色表示集群状态正常
可以通过kafka的命令行客户端测试数据的写入的读取

#创建一个topic
~# /opt/kafka/bin/kafka-topic.sh --crate --topic quick-events --bootstrap-server 172.16.1.12:9092 
#写入数据
~# /opt/kafka/bin/kafka-console-producer.sh --topic quick-events --bootstrap-server 172.16.1.12:9092
#读取数据
~# /opt/kafka/bin/kafka-console-consumer.sh --topic quick-events --bootstrap-server 172.16.1.12:9092

在这里插入图片描述

在OffsetExplorer上也可以看到刚才创建的topic和写入的数据
在这里插入图片描述

三、部署filebeat

在K8S集群上使用DaemonSet控制器部署filebeat,可以通过ELK Stack官网下载filebeat的部署文件filebeat-kubernetes.yaml

curl -L -O https://raw.githubusercontent.com/elastic/beats/8.15/deploy/kubernetes/filebeat-kubernetes.yaml

下载完成后修改yaml文件,添加创建elfk名称空间的指令,并修改下面所有资源的namespace为elfk

apiVersion: v1
kind: Namespace
metadata:
  name: elfk
  labels:
    name: elfk

修改ConfigMap部分,指定了按namespace收集

apiVersion: v1
kind: ConfigMap
metadata:
  name: filebeat-config
  namespace: elfk
  labels:
    k8s-app: filebeat
data:
  filebeat.yml: |-
    filebeat.inputs:
    - type: container
      enabled: true
      paths:
        - /var/log/containers/*_kube-system_*log
      fields:
        log_topic: kube-system
        env: dev
      multiline.pattern: '(^\[[0-9]{4}-[0-9]{2}-[0-9]{2} [0-9]{2}:[0-9]{2}:[0-9]{2}\.[0-9]{3}\])|(^[0-9]{4}-[0-9]{2}-[0-9]{2} [0-9]{2}:[0-9]{2}:[0-9]{2}\.[0-9]{3})|(^[0-9]{2}:[0-9]{2}:[0-9]{2})'
      multiline.negate: true
      multiline.match: after
      multiline.max_lines: 100

    - type: container
      enabled: true
      paths:
        - /var/log/containers/*_elfk_*log
      fields:
        log_topic: elfk
        env: dev
      multiline.pattern: '(^\[[0-9]{4}-[0-9]{2}-[0-9]{2} [0-9]{2}:[0-9]{2}:[0-9]{2}\.[0-9]{3}\])|(^[0-9]{4}-[0-9]{2}-[0-9]{2} [0-9]{2}:[0-9]{2}:[0-9]{2}\.[0-9]{3})|(^[0-9]{2}:[0-9]{2}:[0-9]{2})'
      multiline.negate: true
      multiline.match: after
      multiline.max_lines: 100
  
    - type: container
      enabled: true
      paths:
        - /var/log/containers/*_defaulte_*log
      fields:
        log_topic: defaulte
        env: dev
      multiline.pattern: '(^\[[0-9]{4}-[0-9]{2}-[0-9]{2} [0-9]{2}:[0-9]{2}:[0-9]{2}\.[0-9]{3}\])|(^[0-9]{4}-[0-9]{2}-[0-9]{2} [0-9]{2}:[0-9]{2}:[0-9]{2}\.[0-9]{3})|(^[0-9]{2}:[0-9]{2}:[0-9]{2})'
      multiline.negate: true
      multiline.match: after
      multiline.max_lines: 100
 
    - type: container
      enabled: true
      paths:
        - /var/log/containers/*_metallb-system_*log
      fields:
        log_topic: metallb-system
        env: dev
      multiline.pattern: '(^\[[0-9]{4}-[0-9]{2}-[0-9]{2} [0-9]{2}:[0-9]{2}:[0-9]{2}\.[0-9]{3}\])|(^[0-9]{4}-[0-9]{2}-[0-9]{2} [0-9]{2}:[0-9]{2}:[0-9]{2}\.[0-9]{3})|(^[0-9]{2}:[0-9]{2}:[0-9]{2})'
      multiline.negate: true
      multiline.match: after
      multiline.max_lines: 100
  
    - type: container
      enabled: true
      paths:
        - /var/log/containers/*_redis_*log
      fields:
        log_topic: redis
        env: dev
      multiline.pattern: '(^\[[0-9]{4}-[0-9]{2}-[0-9]{2} [0-9]{2}:[0-9]{2}:[0-9]{2}\.[0-9]{3}\])|(^[0-9]{4}-[0-9]{2}-[0-9]{2} [0-9]{2}:[0-9]{2}:[0-9]{2}\.[0-9]{3})|(^[0-9]{2}:[0-9]{2}:[0-9]{2})'
      multiline.negate: true
      multiline.match: after
      multiline.max_lines: 100
    filebeat.config.modules:
      path: ${path.config}/modules.d/*.yml
      reload.enabled: false

    processors:
    #添加k8s元数据信息
    - add_kubernetes_metadata:
        host: ${NODE_NAME}
        matchers:
        - logs_path:
            logs_path: "/var/log/containers/"
  
     #移除多余的字段
    - drop_fields:
        fields:
          - host
          - ecs
          - log
          - agent
          - input
          - stream
          - container
          - kubernetes.pod.uid
          - kubernetes.namespace_uid
          - kubernetes.namespace_labels
          - kubernetes.node.uid
          - kubernetes.node.labels
          - kubernetes.replicaset
          - kubernetes.labels
          - kubernetes.node.name
        ignore_missing: true
  
    - script:
        lang: javascript
        id: format_time
        tag: enable
        source: |
          function process(event) {
            var str = event.Get("message");

            // 用括号提取时间戳
            var regex = /^\[(.*?)\]/;
            var match = str.match(regex);
            if (match && match.length > 1) {
              var time = match[1]; //提取的不带括号的时间戳
              event.Put("time", time);
            }

			// 提取不带括号的时间戳
            var regex2 = /^\d{2}:\d{2}:\d{2}/;
            var match2 = str.match(regex2);
            if (match2) {
              time = match2[0]; // Extracted timestamp
              event.Put("time", time);
            }
          }
  
     #优化层级结构
    - script:
        lang: javascript
        id: format_k8s
        tag: enable
        source: |
          function process(event) {
            var k8s = event.Get("kubernetes");
            var newK8s = {
              podName: k8s.pod.name,
              nameSpace: k8s.namespace,
              imageAddr: k8s.container.name,
              hostName: k8s.node.hostname
            };
            event.Put("k8s", newK8s);
          }
    #添加时间,可以在logstash处理
    - timestamp:
        field: time
        timezone: Asia/Shanghai
        layouts:
          - '2006-01-02 15:04:05'
          - '2006-01-02 15:04:05.999'
        test:
          - '2019-06-22 16:33:51'

修改daemonset部分,添加k8s-control-plan容忍,允许在master节点上运行filebeat

    spec:
      tolerations:
      - key: node-role.kubernetes.io/control-plane
        operator: Exists
        effect: NoSchedule

部署filebeat

~# kubectl apply -f filebeat-kubernetes.yaml

在这里插入图片描述

检查资源运行情况

~# kubectl get all -n elfk -o wide

在这里插入图片描述

4个节点上都运行filebeat的pod即表示部署成功

四、部署Logstash

4.1、检查kafka上topic

先通过OffsetExlporer查看kafka上是否成功收到了数据,产生了topic
在这里插入图片描述

上图可以看到以namespace为名称产生了topic,说明数据已经成功对接到了kafka集群
在kafka集群上不可很好的查看和检索日志数据,现在需要将kafka上的日志传输到ES集群上,这里需要使用Logstash对日志进行转发和过滤

4.2、部署Logstash

这里复用上一篇里部署的Logstash,新写一份对接kafka的配置文件即可,如下图
在这里插入图片描述

input                   #写入kafka集群的一个节点地址
topics                  #写入kafka集群上已经产生的topic
codec                  #使用json插件解码,生成多个日志字段
output                 #写入ES集群的连接地址
index                   #写入index名称

可以先测试一下配置文件是否正确

~# /usr/share/logstash/bin/logstash -f /etc/logstash/conf.d/kafka-to-es.conf -t

重启logstash

~# systemctl restart logstash

在这里插入图片描述

4.3、检查ES上数据

可以通过elasticsearch head插件或者cerebro插件查看ES-cluster集群上数据是否成功产生
在这里插入图片描述

可以看到ES-cluster上产生jnlikai-k8s-container-log开头的index表示k8s的日志数据已经被转发到了ES集群

五、在Kibana上检索日志

在Kibana上创建数据视图
在这里插入图片描述

创建成功后可以看到此视图下有很多k8s的日志字段,检索日志时可以根据这些字段进行任意筛选检索
在这里插入图片描述

查看视图时也可以看到K8S上的节点、名称空间都是单独字段
在这里插入图片描述

在这里插入图片描述

                                         欢迎关注作者的公众号,公众号每天分享运维干货文章 

在这里插入图片描述

<think>好的,我现在需要回答用户关于在Kubernetesk8s集群中选择ELK还是EFK的问题。首先,我得了解ELKEFK各自的组件区别。ELK是Elasticsearch、Logstash、Kibana的组合,而EFK则是将Logstash替换成Fluentd或Fluent Bit。用户可能关心的是它们在k8s环境中的适用性。 接下来,我应该比较两者的核心差异。Logstash功能强大,支持多种数据转换插件,但资源消耗较大,可能对k8s集群来说负担较重。FluentdFluent Bit更轻量,适合容器化环境,尤其是Fluent Bit设计为低资源消耗,适合作为DaemonSet运行在每个节点上。 然后要考虑k8s日志收集特点。k8s中的容器日志通常是分散的,需要高效的日志代理。Fluentd作为CNCF项目,可能与k8s集成更好,社区支持更活跃。此外,资源占用是一个关键因素,特别是在大规模集群中,轻量级组件更受欢迎。 用户可能还关心部署维护的难易程度。Logstash配置复杂,而Fluentd的配置相对简单,尤其是使用Helm charts可以快速部署。此外,EFK中的Fluent Bit可以作为边车容器,更灵活。 还需要提到两者的扩展性插件生态。Logstash插件多,但Fluentd的插件也在增长,特别是对于云原生工具的支持。如果用户需要特定功能,可能需要检查是否有现成的插件。 最后,总结适用场景:如果处理复杂的数据转换或有现有Logstash配置,可以考虑ELK;但在大多数k8s场景下,EFK更优,尤其是资源敏感或需要简单部署的情况。还要提到Fluent Bit作为替代Fluentd的更轻量选择,适合边缘或资源受限环境。</think>对于Kubernetesk8s集群日志管理,选择**EFK(Elasticsearch + Fluentd/Fluent Bit + Kibana)**通常比传统ELK(Elasticsearch + Logstash + Kibana)更适用。以下是逐步对比分析: --- ### 一、核心差异:Logstash vs Fluentd/Fluent Bit | 特性 | LogstashELK) | Flluentd/Fluent Bit(EFK) | |---------------------|-----------------------------|------------------------------------| | **资源消耗** | 高(Java实现,内存占用大) | 低(Ruby/C实现,轻量级) | | **部署模式** | 适合集中式处理 | 适合分布式(DaemonSet模式运行在节点)| | **k8s集成** | 需要额外配置 | 原生支持容器元数据(如Pod标签) | | **配置复杂度** | 高(需编写复杂管道规则) | 低(声明式配置,插件自动发现) | --- ### 二、为什么EFK更适合k8s? #### 1. **轻量化适配容器环境** - Fluentd/Fluent Bit专为云原生设计,资源占用仅为Logstash的1/10(例如:Fluent Bit内存约20MB,Logstash需500MB+)。 - 适合以**DaemonSet**形式部署在每个节点,实时收集容器日志。 #### 2. **原生支持k8s元数据** - 自动附加Pod名称、命名空间、标签等信息到日志,无需手动解析。 - 示例配置片段: ```yaml <filter kubernetes.**> @type kubernetes_metadata </filter> ``` #### 3. **动态扩展能力** - Fluentd支持缓冲队列流量控制,适应k8s集群的弹性扩缩容。 - Logstash的单点处理模式在节点故障时可能丢失数据。 #### 4. **社区与生态** - Fluentd是CNCF毕业项目,与k8s生态兼容性更好。 - Helm Charts(如`fluentd-helm`)提供开箱即用的部署模板。 --- ### 三、ELK的适用场景 尽管EFK更主流,但ELK可能在以下情况被选择: 1. **复杂数据预处理**:需要Logstash的丰富插件(如Grok解析非结构化日志)。 2. **已有Logstash技术栈**:避免技术栈迁移成本。 3. **非容器化混合环境**:同时管理虚拟机与容器日志--- ### 、EFK架构优化建议 1. **使用Fluent Bit替代Fluentd**: - 若资源极度敏感(如边缘集群),Fluent Bit比Fluentd更轻量。 - 通过Sidecar模式采集特定容器日志。 2. **Elasticsearch优化**: - 部署为StatefulSet,结合本地SSD存储。 - 设置索引生命周期策略(ILM),自动清理旧日志。 3. **Kibana可视化**: - 利用Lens插件快速构建日志仪表盘。 --- ### 五、总结 - **优先选择EFK**:适用于90%的k8s场景,尤其是大规模集群资源敏感环境。 - **谨慎选择ELK**:仅在需要Logstash高级功能或已有技术债务时考虑。 实际部署时,可通过以下命令快速验证EFK: ```bash helm install fluentd fluent/fluentd --values custom-values.yaml kubectl apply -f elasticsearch-statefulset.yaml ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值