Logistic回归(原理与Facebook指标数据集的实验)

本文深入探讨Logistic回归的原理,包括极大似然估计和梯度下降法。通过实验展示了如何使用Logistic回归对Facebook指标数据集进行分类,比较了不同优化方法的性能,如梯度上升法和随机梯度上升法,分析了实验结果并总结经验教训。
摘要由CSDN通过智能技术生成

Logistic回归

分类问题

回归:假设现在有一些数据点,我们用一条直线对这些点进行拟合(该线称为最佳拟合直线),这个拟合过程就称作回归。
利用Logistic回归进行分类的主要思想是:根据现有数据对分类边界线建立回归公式,以此进行分类。
我们需要寻找函数将分类标记与线性回归模型输出联系起来。
单位阶跃函数:
在这里插入图片描述
通过单位阶跃函数公式可以看出该函数不连续,不可微。
因此我们选择Logistic函数作为替代函数,Logistic函数与单位阶跃函数的不同之处在于Logistic函数是单调可微且任意阶可导的,逻辑回归是拟合“y的sigmoid函数”。
在这里插入图片描述
sigmoid函数图像:
在这里插入图片描述
由sigmoid的函数图像可以看出:sigmoid函数图像为S型,若x轴的取值范围很大时,sigmoid函数图像就类似于单位阶跃函数,但sigmoid函数仍具有单调可微且任意阶可导的性质。
单调阶跃函数与sigmoid函数的区别:
在这里插入图片描述

极大似然估计

极大似然估计是求解未知参数的方法。假设有一些样本,则可以根据样本的概率密度累乘构造似然函数,再通过似然函数最大化(求导为零)进而求出未知参数。在计算过程当中,为了减少计算难度,通常将概率累乘转化为对数累加,再通过导数为零(极大值)来求解未知参数。
在Logistic回归当中,我们也可以用极大似然估计来求解出回归系数。
最大化对数似然函数:
在这里插入图片描述
β = ( w ; b ) , x ^ = ( x ; 1 ) \beta=(w;b),\widehat{x}=(x;1) β=(w;b),x =(x;1),则 w T x + b w^Tx+b wTx+b简写为 β T \beta^T βT x ^ \widehat{x} x

p 1 ( x ^ i ; β ) = p ( y = 1 ∣ x ^ ; β ) p_1(\widehat{x}_i;\beta)=p(y=1|\widehat{x};\beta) p1(x i;β)=p(y=1x ;β), p 0 ( x ^ i ; β ) = p ( y = 0 ∣ x ^ ; β ) = 1 − p 1 ( x ^ i ; β ) p_0(\widehat{x}_i;\beta)=p(y=0|\widehat{x};\beta)=1-p_1(\widehat{x}_i;\beta) p0(x i;β)=p(y=0x ;β)=1p1(x i;β)

p ( y i ∣ x i ; w i , b ) = y i p 1 ( x ^ i ; β ) + ( 1 − y i ) p 0 ( x ^ i ; β ) p(y_i|x_i;w_i,b)=y_ip_1(\widehat{x}_i;\beta)+(1-y_i)p_0(\widehat{x}_i;\beta) p(yixi;wi,b)=yip1(x i;β)+(1y

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值