区间DP路径记录问题(常常开一个和dp数组等大的路径数组)

该代码实现了一个动态规划算法,用于解决字符串中有效括号的匹配问题。通过维护一个二维dp数组和路径矩阵,计算从字符串的某个位置到另一个位置的最小匹配括号组合。遍历字符串的不同长度子串,更新dp值和路径信息。最后输出从第一个字符到最后一个字符的最优括号路径。
摘要由CSDN通过智能技术生成
//https://vjudge.net/problem/POJ-1141#author=Prince1Alexander
const int N = 1e3 + 10;

int dp[N][N];
string path[N][N];

void solve()
{
    string s;
    cin >> s;
    int n = s.size();
    s = '?' + s;

    for(int i = 1; i <= n; i++)
    {
        dp[i][i] = 1;
        if(s[i] == '(' || s[i] == ')') path[i][i] = "()";
        else path[i][i] = "[]";
    }

    for(int l = 1; l <= n; l++)
        for(int r = l + 1; r <= n; r++)
            dp[l][r] = inf;

    for(int len = 2; len <= n; len++)
    {
        for(int l = 1; l + len - 1 <= n; l++)
        {
            int r = l + len - 1;
            for(int mid = l; mid < r; mid++)
            {
                if(dp[l][mid] + dp[mid + 1][r] < dp[l][r])
                {
                    dp[l][r] = dp[l][mid] + dp[mid + 1][r];
                    path[l][r] = path[l][mid] + path[mid + 1][r];
                }
            }

            if((s[l] == '(' && s[r] == ')' || s[l] == '[' && s[r] == ']') && dp[l + 1][r - 1] < dp[l][r])
            {
                dp[l][r] = dp[l + 1][r - 1];
                path[l][r] = s[l] + path[l + 1][r - 1] + s[r];
            }

            // cout << l << ' ' << r << ' ' << path[l][r] << '\n';
        }
    }

    cout << path[1][n] << '\n';
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值