三、题目:李白打酒
话说大诗人李白,一生好饮。幸好他从不开车。
一天,他提着酒壶,从家里出来,酒壶中有酒2斗。他边走边唱:
无事街上走,提壶去打酒。
逢店加一倍,遇花喝一斗。
这一路上,他一共遇到店5次,遇到花10次,已知最后一次遇到的是花,他正好把酒喝光了。
请你计算李白遇到店和花的次序,可以把遇店记为a,遇花记为b。则:babaabbabbabbbb 就是合理的次序。像这样的答案一共有多少呢?请你计算出所有可能方案的个数(包含题目给出的)。
分析思路:遇店5次,遇花10,最后一次遇花,最后一壶酒喝完,刚开始有两壶酒;
假设第一次遇到店,这是一类,假设第一次遇到花,这是另一类
代码:
#include<iostream>
using namespace std;
int ans; //记录方案数
void f(int shop,int flower,int beer){
if(shop==0&&flower==0&&beer==1)
ans++;
if(shop>0)
f(shop-1,flower,beer*2);
if(flower>0)
f(shop,flower-1,beer-1);
}
int main(){
f(5,9,2); //9是因为最后一次还遇到花
cout<<ans<<endl;
return 0;
}
六、题目:奇怪的分式
上小学的时候,小明经常自己发明新算法。一次,老师出的题目是:
1/4 乘以 8/5
小明居然把分子拼接在一起,分母拼接在一起,答案是:18/45 (参见图1.png)
老师刚想批评他,转念一想,这个答案凑巧也对啊,真是见鬼!
对于分子、分母都是 1~9 中的一位数的情况,还有哪些算式可以这样计算呢?
请写出所有不同算式的个数(包括题中举例的)。
显然,交换分子分母后,例如:4/1 乘以 5/8 是满足要求的,这算做不同的算式。
但对于分子分母相同的情况,2/2 乘以 3/3 这样的类型太多了,不在计数之列!
注意:答案是个整数(考虑对称性,肯定是偶数)。请通过浏览器提交。不要书写多余的内容。
分析思路:可以利用枚举法,需要注意的是最大公约数问题
代码:
#include<iostream>
using namespace std;
int ans; //记录可能的种类
int gcd(int a,int b){ //最大公约数,用来约分
if(b==0)
return 0;
return gcd(b,a%b);
}
int main(){
cout<<gcd(12,16)<<endl; //验证最大公约式
for(int a=1;a<10;a++){
for(int b=1;b<10;b++){
if(b==a)
continue;
for(int c=1;c<10;c++){
for(int d=1;d<10;d++){
if(c==d)
continue;
int g1=gcd(a*c,b*d);
int g2=gcd(a*10+c,b*10+d);
if(a*c/g1==(a*10+c)/g2&&b*d/g1==(b*10+d)/g2)
printf("%d %d %d %d",a,b,c,d);
ans++;
}
}
}
}
cout<<ans<<endl;
return 0;
}
答案结果:14