2018蓝桥杯A组:方格计数(3种方法)

本文探讨了在二维平面上,以一个小方格顶点为圆心,半径为1000的圆内完整小方格数量的计算方法。通过分析圆的覆盖范围和排除轴上点的影响,提出了三种不同的算法实现,包括全范围遍历、四分之一区域遍历和优化后的高效算法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

四、题目:方格计数

如图p1.png所示,在二维平面上有无数个1x1的小方格。
我们以某个小方格的一个顶点为圆心画一个半径为1000的圆。
你能计算出这个圆里有多少个完整的小方格吗?
注意:需要提交的是一个整数,不要填写任何多余内容
在这里插入图片描述


  • 分析思路:
    在这里插入图片描述

1.以原点为圆心,半径为1000,则x轴范围(-1000,1000),y轴范围(-1000,1000)
for(x:-1000~1000)
for(x:-1000~1000)
if(x^2+y ^2<=1000 ^2)
需要注意轴上的点是不能形成方格的(图中橘色的点)
2.可以将圆分成4等分,也就是4个卦限,选择其中一个算方格数,最后乘以4
以第一卦限为例
代码1:

public class Fanggenum {
	public static void main(String[] args) {
   int r=0;
   for(int i=-1000;i<=1000;i++) {
	for(int j=-1000;j<=1000;j++) {
		if(i==0||j==0) continue;
		if(i*i+j*j<=1000*1000)
			r++;
	}
}
System.out.println(r*4);
}
}

代码2:第一卦限

public class Fanggenum {
	public static void main(String[] args) {
		int r=0;
		for(int i=1;i<=1000;i++) {
			for(int j=1;j<=1000;j++) {
				if(i*i+j*j<=1000*1000)
					r++;
			}
		}
		System.out.println(r*4);
		}
	}	

代码3:优化

public class Fanggenum {
	public static void main(String[] args) {
        int N=1000;
		int y=N; //y从有边界开始定义到最大,递减
		int ans=0;
		for(int x=1;x<N;x++) {  //x=1时,对应第一列
			while(x*x+y*y>N*N&&y>0)
				y--;
			ans+=y;
		}
		System.out.println(ans*4);
	}
}

在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值