Triangle
一、题目说明
要求输入一个如图的数据,输出最短路径和,这里最短是说走过的节点值和最小,同时要求一定要走上下相邻的节点。
二、思路
拿到这道题,我们会想到在最后一层每个节点应该都有相应的一个路径和,最后求最后一层里最小的一个路径和就可以了。
而最后一层的路径和是怎么来的?是从上一层相加来的,于是我们马上会想到要用到动归。
dp[][] 用来存储到当前节点的最短路径和。
动归的话,就要定义初值:dp[0][0] = 顶点值 ;
递推式:dp[i][j] = Math.min(dp[i-1][j-1], dp[i][j-1]) + a节点值;
如果是在左右两边的话,相邻的节点就只有一个,所以递推式需要改下:
dp[i][j] = dp[i-1][j] + a //左边 dp[i][j] = dp[i-1][j-1] + a //右边,要注意当前行要比上一行长1
三、java代码
public class Solution {
public int minimumTotal(List<List<Integer>> triangle) {
if(triangle == null)
return 0;
int dp[][] = new int[triangle.size()][];
dp[0] = new int[1];
dp[0][0] = triangle.get(0).get(0);
for(int i=1; i<dp.length; i++) {
dp[i] = new int[i+1];
for(int j=i; j>=0; j--) {
int a = triangle.get(i).get(j);
if(j == 0) {//最左边,只有一个邻居
dp[i][j] = dp[i-1][j] + a;
} else if(j == i) {//最右边,只有一个邻居
dp[i][j] = dp[i-1][j-1] + a;
} else {
dp[i][j] = Math.min(dp[i-1][j], dp[i-1][j-1]) + a;
}
}
}
int tmpMin = dp[dp.length-1][0];
for(int i=1; i<dp[dp.length-1].length; i++) {
if(tmpMin > dp[dp.length-1][i])
tmpMin = dp[dp.length-1][i];
}
return tmpMin;
}
}