自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(25)
  • 收藏
  • 关注

原创 Claude code项目级别的理解分析

一、核心理解机制Claude Code 使用分层记忆文件系统来持久化项目知识:文件结构:/项目根目录├─ CLAUDE.md # 团队共享记忆(提交到 Git)├─ CLAUDE.local.md # 个人工作空间记忆(gitignore)└─ /子目录└─ CLAUDE.md # 子模块特定记忆Explore Agent(探索代理):用户:“理解这个项目的认证系统”↓。

2025-11-19 13:16:45 708

原创 《On the Impact of Requirements Smells in Prompts: The Case of Automated Traceability》翻译

2] J. Fischbach, J. Frattini, A. Vogelsang, D. Mendez, M. Unterkalmsteiner, A. Wehrle, P. R. Henao, P. Yousefi, T. Juricic, J. Raddieux, and C. Wrocher, “通过从需求中提取条件来自动创建验收测试:NLP 方法与案例研究,” 《系统与软件杂志》,卷 197,页 111549,2023。除了定量分析,我们还将收集定性见解,以识别生成的工件中出现的问题。

2025-11-19 11:24:02 424

原创 《Requirements Traceability: A Systematic Literature Review》论文阅读整理

这是个短文,就2页,内容有限,但信息密度很高。

2025-11-18 22:27:58 302

原创 调用 Claude Code CLI 问题总结

编码处理:Windows 下使用text=False+ 手动 UTF-8 解码Shell 支持:Windows 需要shell=True异步处理:大项目分批用asyncio提高效率错误日志:详细的 DEBUG 输出帮助快速定位问题。

2025-11-15 15:27:08 428

原创 Claude Code API Gateway 配置指南

*根据最新的 2025 年信息,Python 中调用 Claude Code,可以使用 Claude Code API Gateway,以下是一些实践最终还是没运行起来,报错调不起来Claude code,但我单独写了程序用subprocess掉用Claude code Cli 是没问题的。以下用于备忘,仅供参考。

2025-11-15 14:59:25 680

原创 Claude Code 深度解析:架构、工作原理与常见误解

Claude Sonnet 4.5 模型本身没有项目级理解能力✅它只是一个语言模型处理输入的文本,生成输出的文本项目级理解 100% 在本地 Claude Code CLI 实现✅代码索引依赖分析AST 解析语义搜索上下文管理不存在独立的"Claude Code 服务端"✅Claude Code CLI 直接调用标准 Claude API慧言平台等只是网络代理所有智能处理在本地完成ccswitch 只是配置工具✅管理环境变量切换 API 提供商不参与代码分析。

2025-11-13 23:16:58 799

原创 Kode 代码理解与上下文管理系统

Kode 的上下文系统 () 负责管理项目中所有与环境相关的上下文信息,并将这些信息自动注入到 AI 对话中。四层记忆架构- 会话、项目、用户、工具记忆协同工作工具系统协同- 7种核心工具提供全方位的代码分析能力实时状态监控- 文件新鲜度追踪和智能提醒机制多层次项目理解- 从 Git 状态、目录结构、代码风格、项目配置等多个维度收集信息自动上下文注入- 基于项目状态智能选择相关上下文。

2025-11-09 00:44:15 807

原创 Windows 系统 慧言Claude Code 环境完整部署指南

编写代码调试问题重构代码分析代码库。

2025-11-08 15:28:23 231

原创 VLLM大模型服务部署指南

环境变量仅在当前 shell 中生效,每次创建新的 shell 都需要重新加载。:高性能、开源的大模型推理与服务框架。

2025-10-13 16:02:43 704

原创 解释匿名内部类

匿名内部类是没有名字的内部类,通常用于一次性使用的场景。它同时完成类的定义和实例化。特性匿名内部类常规公共API可见性方法内部可见包/公共可见用途实现细节接口契约生命周期临时使用长期存在API价值低(内部实现)高(对外服务)解析必要性不需要需要因此,在提取公共API时,跳过匿名内部类文件是正确且高效的做法避免解析错误(匿名类语法特殊)提高处理速度聚焦于真正的公共接口得到更干净的API文档。

2025-09-26 08:39:14 230

原创 Visualizing_Software_Repositories_Through_Requirements_Trace_Links

本文提出一种自动化需求追踪与可视化方法,通过关键词匹配、TF-IDF和词向量三种技术从GitHub仓库提取需求与开发工件(Issues/PRs/Commits)的关联关系,构建有向跟踪链并存储于Neo4j图数据库。开发了交互式仪表板,支持项目概览、跟踪链分析、时间轴视图等多维度可视化。初步评估显示TF-IDF方法表现最佳(F1=0.354),但精确率仍有提升空间。未来将探索LLM增强语义理解,并在教育/工业场景扩大验证。该方法为软件项目管理提供了自动化追踪和可视化分析的新思路。

2025-09-19 12:03:07 943

原创 P-Tuning 的核心机制

P-Tuning是一种高效的预训练语言模型微调方法,通过优化可学习的连续提示(soft prompts)来指导模型完成下游任务。与传统微调不同,它冻结主干模型参数,仅训练虚拟提示向量和简单分类头,大幅降低计算开销。这些连续提示作为抽象表示拼接在输入前,通过训练学习最优引导方式,实现轻量高效的模型适配。该方法避免了人工设计离散提示的繁琐,让模型自动学习最适合任务的提示表示。

2025-09-18 21:49:14 169

原创 LoRA(Low-Rank Adaptation)

LoRA是一种高效的大模型微调方法,通过低秩分解冻结原始参数,仅训练少量额外参数来近似权重变化。其核心是将权重变化ΔW分解为两个小矩阵B·A(r远小于原维度),大幅降低计算和存储成本。该方法具有参数效率高、避免灾难性遗忘、便于多任务切换等优势,已成为大模型微调的主流技术,广泛应用于对话模型、多任务学习等场景。

2025-09-18 21:36:07 396

原创 《Cross-Level Requirements Tracing Based on Large Language Models》论文阅读

本文提出了一种基于大语言模型(LLM)的跨层级需求追踪方法,通过构建多领域数据集(6个单项目+3个同领域跨项目+1个跨领域)并采用文本摘要、同义词替换、机器翻译和噪声注入等技术将数据扩增至2400余条。研究对比了LoRA、P-Tuning和Prompt-Tuning三种微调策略在LLaMA模型(1.1B/7B/13B)上的表现,结果显示该方法显著优于传统信息检索(F1提升56.07%)和机器学习方法(F1提升26.37%)。在跨领域测试中,该方法F1分数超过GPT-4o和DeepSeek-r1达16%以上,

2025-09-18 16:11:54 930

原创 《Requirements Classification for Traceability Link Recovery》论文笔记

本文提出了一种基于大语言模型的自动化需求-代码追溯链接方法,通过需求分类预处理提升链接精度。研究创新点包括:1)开发NoRBERT需求分类模型对需求元素进行细粒度分类;2)结合词嵌入和WMD计算语义相似度;3)设计功能属性过滤机制。实验结果表明,该方法在多个基准项目上显著提升TLR性能,F1值最高提升2.9%,优于现有方法。主要贡献包括发布新型标注数据集、验证分类器性能及过滤机制有效性。未来将探索分类器在其他TLR方法中的应用及工业场景验证。

2025-09-14 21:07:10 777

原创 《Requirements Classification for Traceability Link Recovery》FTLR模块详解

本文介绍了细粒度可追踪链接恢复系统(FTLR)的安装配置与核心处理流程。系统采用两阶段处理架构:预计算阶段生成词嵌入和相似度矩阵,追踪链接处理阶段进行相似度计算和决策优化。系统支持多种运行器变体,包括基于词移距离和余弦相似度的不同实现方式。可通过命令行界面或脚本运行,支持需求元素过滤、调用图集成等功能。处理结果保存在数据集对应输出目录,包含相似度矩阵、映射文件及评估指标(F1/MAP)。系统提供预计算数据复用机制,支持英语和意大利语处理,并包含词元预计算优化。

2025-09-12 22:00:47 823

原创 编程的策略模式

如下代码展示了面向对象编程中的继承和多态设计模式。

2025-09-12 11:01:02 277

原创 多数投票阈值和最终阈值详解

摘要:本文介绍了两种软件需求追踪阈值机制。maj_threshold用于判断文件/类是否整体关联需求,通过统计方法级相似度达标比例(如60%方法相似度>0.5)来确定。final_threshold则对聚合后的文件级相似度(如平均值0.645)进行最终筛选(如>0.5)。二者协同工作,maj_threshold确保方法层面的多数一致性,final_threshold则验证整体相似度,避免低相似文件被误判为相关。高maj_threshold可降低对final_threshold的依赖,但低fina

2025-09-11 16:06:10 278

原创 《Requirements Classification for Traceability Link Recovery》NORBERT模型的代码详解

以下是按执行时序整理的代码主要功能、所有函数名称及其功能,以及函数调用关系的分析:安装依赖库—1导入必要的Python包—2检查GPU可用性—3设置实验配置参数—4设置数据集加载路径—5定义日志功能和种子生成器—6定义适配器类:将HuggingFace的BertTokenizer包装为与fast.ai兼容的tokenizer, 这个类充当桥梁,让HuggingFace的BERT tokenizer能够在fast.ai框架中使用—7定义BERT专用的处理器列表,BERT数据束类,专门用于BERT模型的数据预处

2025-09-08 22:11:13 398

原创 fit_one_cycle一周期学习率策略详解

fit_one_cycle是一种高效的学习率调度方法,通过三个阶段(预热、降温、最终衰减)动态调整学习率。它能加速模型收敛(大学习率快速逃离局部最优),提高泛化性能(找到更平坦最小值),并简化超参数设置(主要调节max_lr)。适用于各类深度学习任务,在保持训练效果的同时显著减少调参复杂度。典型参数包括max_lr(0.01-0.1)、div_factor(25-100)和pct_start(0.3-0.5)。

2025-09-08 19:18:27 242

原创 随机种子(Random Seed)如何保证确定性

随机种子是机器学习中确保实验结果可重复性的关键技术。作为伪随机数生成器的初始值,相同种子会生成完全相同的随机序列,从而保证数据打乱、权重初始化、数据分割等关键环节的一致性。通过设置Python、NumPy、PyTorch等框架的随机种子,配合CuDNN确定性模式,可实现bit级完全确定性的实验结果。但需要注意硬件一致性、软件版本、并行计算等因素可能破坏确定性。合理设置随机种子能提高实验可信度,是复现研究结果的基础保障。

2025-09-07 10:52:41 852

原创 交叉验证、项目折叠验证、简单分割三种验证方法详解

交叉验证、项目折叠验证、简单分割

2025-09-06 22:03:43 913

原创 在 Jupyter Notebook 中使用 Anaconda 虚拟环境

本文介绍了在Jupyter Notebook中使用Anaconda虚拟环境的详细步骤。核心是通过ipykernel库将虚拟环境注册为Jupyter内核。具体操作包括:1)创建并激活conda虚拟环境;2)在虚拟环境中安装ipykernel;3)将环境添加为Jupyter内核;4)启动Jupyter并选择新内核。验证方法是在Notebook中检查Python解释器路径是否指向目标环境。这种方法确保代码在指定环境中运行,适用于多项目管理。

2025-09-04 17:45:39 448

原创 在 Ubuntu 系统上安装 Anaconda

为了安全起见,你可以验证下载文件的 SHA256 校验和,确保文件没有损坏或被篡改。你可以在下载页面找到官方提供的校验值。验证 Conda 和 Python 是否已正确安装。重新打开终端后,你应该会看到命令行的最前面有一个。这表示你当前正处于 Anaconda 的。现在你可以创建独立的环境来管理不同项目的依赖了。安装过程需要几分钟,请耐心等待。还需要安装CUDA、GPU驱动。为了让安装立即生效,你需要。命令运行你下载的脚本。

2025-09-04 17:39:44 461

原创 Gitlink远程提交大文件教程

摘要:本文详细介绍了使用Git LFS上传大文件到Gitlink的操作流程。首先安装Git LFS客户端,然后通过git init初始化仓库,用git lfs track指定要追踪的大文件。接着提交.gitattributes配置文件,添加并提交大文件。最后设置远程仓库地址,解决历史合并冲突,关闭SSL验证后完成推送。整个过程包含8个关键步骤,并配有命令行操作截图,解决了Gitlink平台5M文件大小限制的问题。

2025-07-02 15:54:26 257

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除