柱爷抢银行III
Time Limit: 1000/1000MS (Java/Others) Memory Limit: 65535/65535KB (Java/Others)
若干年后,柱爷再次来到了喵蛤蛤城,准备再干一票!!
这一次,喵蛤蛤城早已不是之前的样子,喵哈哈城里有N个银行,用N−1条双向马路相连,银行的编号为0,1,2,......,N−1,任意的两个银行间接或直接都能相互到达.
第i条马路会有一个权值di,表示柱爷经过这条马路需要花费的精力值,从马路的任意一端出发,这个权值保持不变.
柱爷决定从这些银行中抢一部分银行,只要柱爷的精力值非负,柱爷就能洗劫所在点的银行;当然因为柱爷抢银行抢的特别熟练,所以柱爷抢银行是不需要花费精力值的.
柱爷到达了0号银行,在洗劫0号前,柱爷突然想知道一个问题:如果我有x点精力值,我能抢劫几个银行呢.
你能帮柱爷解决这抢劫的小小问题吗?
Input
第一行,一个正整数:N表示银行个数.接下去N−1N−1行,每行一个3个非负整数:u,v,d表示第u号银行和第v号银行之间有一条需要花费d精力值的马路.
接下去一个非负整数:q表示柱爷共有q个问题.
接下去有q行,每行有一个非负整数:x表示这次柱爷设想自己有x的精力值.
数据保证:
1≤N≤500
1≤di≤10000
0≤u,v<N
1≤q≤1000
0≤x≤5000000
Output
输出一共有q行,每行一个整数:ans表示柱爷第q次设想时最多可以抢的银行数目.
Sample Input
3
1 0 5
2 0 3
4
2
3
10
11
Sample Output
1
2
2
3
Source
2016 UESTC Training for Dynamic Programming
题解
此题很明显是一个树形dp,由于x很小,我们定义dp[u][k]表示在u节点走k个节点的最小花费。发现无法转移,我们就再添一维表示是否在u节点。
#include <bits/stdc++.h>
using namespace std;
const int Maxn = 503;
typedef pair<int,int> pii;
vector<pii>edge[Maxn];
int dp[Maxn][Maxn][2];
void SelfMin(int &a, const int &b) { if (b < a) a = b; }
int Cal(int u, int fa) {
int siz = 1, v, d, sons; dp[u][1][1] = 0;
for (int i = 0; i < edge[u].size(); ++i) {
v = edge[u][i].first, d = edge[u][i].second;
if (v == fa) continue;
sons = Cal(v, u);
for (int j = siz; j; --j)
for (int k = sons; k; --k) {
SelfMin(dp[u][j + k][0], dp[u][j][0] + dp[v][k][1] + (d << 1));
SelfMin(dp[u][j + k][0], dp[u][j][1] + dp[v][k][0] + d);
SelfMin(dp[u][j + k][0], dp[u][j][1] + dp[v][k][1] + d);
SelfMin(dp[u][j + k][1], dp[u][j][1] + dp[v][k][1] + (d << 1));
}
siz += sons;
}
return siz;
}
int main() {
int N, u, v, d, Q;
scanf("%d", &N);
memset(dp, 127, sizeof dp);
for (int i = 1; i < N; ++i) {
scanf("%d%d%d", &u, &v, &d);
edge[u].push_back(make_pair(v, d));
edge[v].push_back(make_pair(u, d));
}
Cal(0, -1);
scanf("%d", &Q);
while (Q--) {
scanf("%d", &d);
u = 0;
while (dp[0][u + 1][0] <= d || dp[0][u + 1][1] <= d) ++u;
printf("%d\n", u);
}
return 0;
}