前言:
随着多智能体协同架构、大语言模型(LLM)与自动化工具链的快速发展,科研写作正从“人工主导”向“智能赋能”加速转型。本课程深度融合LLM(ChatGPT/DeepSeek等)、多智能体系统(AutoGen/LangChain)及n8n自动化流水线,直击科研学者三大核心痛点——文献检索耗时、写作流程割裂、成果打磨低效,打造“全链路智能写作解决方案”。
技术特色上,本教程构建“多Agent协同+自动化”双引擎,通过AutoGen设计规划、写作、校对Agent集群,实现论文结构自动生成与内容协同创作;依托n8n搭建“文献更新→自动写作→质量检测→润色定稿”的触发式流水线,彻底解放重复劳动。科研学者学习后,可一键获取文献摘要、自动生成论文框架、自动优化语言表达,效率提升300%,同时借助LoRA微调与RAG增强技术,保障学术内容的准确性与专业性。
教程以“实战落地”为核心,七章内容从LLM原理与科研痛点解析起步,逐步深入文献检索Agent(集成PubMed/arXiv API)、写作协同Agent(多Agent任务规划)、n8n自动化流水线搭建、模型微调与Prompt工程等核心技术模块,每章均含代码实操(如OpenAI API摘要生成、n8n工作流演示)与真实案例演练,确保技术人员从理论到系统开发全面掌握。无论是高校教师快速产出高质量论文,还是科研人员高效管理多项目写作,亦或AI开发者掌握前沿系统架构,本教程均为稀缺赋能平台
内容简要:
第一章:AI Agent与科研写作基础与实践
1.大语言模型(LLM)原理:Transformer架构、预训练与微调
2.AI Agent定义及类型:单Agent vs 多Agent系统、Agent能力
3.科研写作环节解析:文献查找、资料整理、写作草稿、内容润色
4.行业现状与技术趋势:最新科研辅助AI Ag

最低0.47元/天 解锁文章
1286

被折叠的 条评论
为什么被折叠?



