许泽宇的技术分享
码龄11年
关注
提问 私信
  • 博客:106,463
    动态:1,288
    107,751
    总访问量
  • 102
    原创
  • 13,983
    排名
  • 1,435
    粉丝
  • 2
    铁粉

个人简介:微软最有价值专家(Al Platform MVP),华为云开发者专家(HCDE),211研究生,专注.Net 和AI相关技术,每期内容涵盖教程、技巧、行业动态及解决方案,助力各层次开发者掌握技术精髓,共同进步。 运营公众号与B站同号《许泽宇的技术分享》 简介、实用、深入.Net与AI世界,开始我们的技术之旅。加油吧.Net

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:湖北省
  • 毕业院校: 华中师范大学
  • 目前就职: 软通动力信息技术(集团)股份有限公司
  • 加入CSDN时间: 2013-09-12
博客简介:

许泽宇的技术分享

查看详细资料
  • 原力等级
    领奖
    当前等级
    4
    当前总分
    761
    当月
    16
个人成就
  • 获得1,726次点赞
  • 内容获得6次评论
  • 获得1,107次收藏
  • 代码片获得148次分享
创作历程
  • 98篇
    2024年
  • 1篇
    2023年
  • 6篇
    2017年
成就勋章
TA的专栏
  • AIGC
    45篇
  • GraphRag
    5篇
  • AntSK
    17篇
  • 大模型
    2篇
  • SemanticKernel
    2篇
  • .net
    5篇
  • web前端
    2篇
兴趣领域 设置
  • 编程语言
    c#
  • 人工智能
    人工智能
  • 微软技术
    .net
TA的社区
  • 许泽宇的技术分享
    2 成员 82 内容
    创建者
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

179人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

UFO:Windows操作系统的具象智能代理

UFO作为一个多代理框架,主要包含以下几个组件:HostAgent 🤖:负责选择适合用户请求的应用程序。当请求跨越多个应用时,它还可以在完成部分任务后切换应用。AppAgent 👾:在选定的应用程序内迭代执行操作,直至任务成功完成。应用自动化器 🎮:负责将HostAgent和AppAgent的行动翻译为与应用程序的交互,包括UI控件、原生API或AI工具的使用。这两个代理利用GPT-Vision的多模态能力来理解应用界面并完成用户的请求。更详细的技术内容可以参考官方的技术报告和文档。
原创
发布博客 2024.11.04 ·
773 阅读 ·
27 点赞 ·
0 评论 ·
18 收藏

阿里 Qwen2.5 爆了,登顶全球第一,遥遥领先...

在全球开源大模型的比拼中,摘得桂冠,成为了。而在众多评测中,也已遥遥领先国内其他大模型。百炼平台之前我们也有介绍过,百炼可以提供多种业务场景,我们可以在上面训练自己的模型,创建应用,搭建知识库,上传自定义插件等等,更灵活,更高效的开发一些基于大模型的定制化的应用产品,快速嵌入到我们业务中。这里还是通过Ollama工具来安装模型,首先进入到官网,搜索「Qwen」,可以看到最新模型,点击进去,可以看到不同尺寸大小的模型,其中72B也是本次的旗舰版,但是考虑电脑存储大小,我们本次安装测试Qwen2.5-7B.
转载
发布博客 2024.11.04 ·
78 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

RAGChecker:显著超越RAGAS,一个精细化评估和诊断 RAG 系统的创新框架

RAG应用已经是当下利用大模型能力的典型应用代表,也获得了极大的推广,各种提升RAG性能的技术层出不穷。然而,如何全面、准确地评估 RAG 系统一直是一个挑战。传统评估方法存在诸多局限性:无法有效评估长文本回复、难以区分检索和生成模块的错误来源、与人类判断的相关性不高。为此,亚马逊和上海交通大学等研究团队开发了 RAGChecker[1],这是一个专为 RAG 系统设计的创新评估框架。RAGChecker 的核心亮点在于其细粒度的评估方法。
转载
发布博客 2024.11.04 ·
20 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

深入剖析:.Net8 引入非root用户运行的新特性提升应用安全性

确保您的.NET应用程序能够以非root用户身份运行,不仅是一个好的安全实践,也是面向未来的必要步骤,毕竟未来的.NET版本与云原生技术的整合将会越来越紧密。如果攻击者能够利用应用中的漏洞或容器配置上的不当,他们可能以容器内的root用户身份获得更广泛的访问权限,从而威胁到整个系统的安全。因此,为了在这些环境中顺利部署应用,需要确保你的容器能够以非root用户执行。: 即使应用代码中存在未知的安全漏洞,以非root用户运行的影响也要小得多,因为即使漏洞被利用,攻击者也难以通过提升权限来进行更广泛的攻击。
原创
发布博客 2024.10.15 ·
831 阅读 ·
5 点赞 ·
0 评论 ·
20 收藏

探索RAG评估管道 Micronaire :从理论到实践

RAG系统评估的重要性不言而喻。通过RAGChecker和RAGAS这样的先进框架,以及在DotNet平台上实现的Micronaire项目,开发者们将在RAG系统的优化和应用中如虎添翼。这些工具不仅提高了评估的准确性和效率,还为未来的创新和突破创造了无限可能。我们期待与广大开发者和研究者共同探索AI的未来,一起迈向更加智能和高效的新时代。
原创
发布博客 2024.10.15 ·
1024 阅读 ·
27 点赞 ·
0 评论 ·
9 收藏

人工智能时代:程序员如何在变革中保持核心竞争力?

在AI时代,程序员既面临挑战,也拥抱机遇。AI辅助编程工具为我们提供了前所未有的便利,但也要求我们不断提升自己的核心竞争力。在复杂系统设计、跨学科知识整合和与AI协作等方面,程序员需要不断学习和适应新的技术环境。同时,保持清晰的职业发展规划,通过实践、交流和终身学习,确保自己在快速变化的技术浪潮中始终处于领先地位。无论面对怎样的挑战,只要我们不断努力,就一定能够在AI时代保持并提升自己的核心竞争力。
原创
发布博客 2024.10.14 ·
574 阅读 ·
29 点赞 ·
0 评论 ·
9 收藏

OpenAI 最新发布的 o1 模型在 ARC-AGI-Pub 数据集上的测试结果与分析

可以推测的是,奖励信号可能来自于类似于OpenAI以前发布的 actor+critic 系统,并且在推理时会对生成的推理步骤进行搜索或回溯。o1 训练的基础数据来源依然是固定的预训练数据集,但 OpenAI 能够生成大量模拟人类推理的合成连锁推理数据,用于进一步强化模型训练。测试和报告类似模型的结果时,我们的目的是尽可能地测量基模型的性能,而不进行任何优化层。当人工智能系统在测试时允许可变的计算量(例如推理步骤的数量或搜索时间)时,就没有客观的方法来报告单一的基准分数,因为它与允许的计算量相关。
原创
发布博客 2024.10.14 ·
563 阅读 ·
22 点赞 ·
0 评论 ·
5 收藏

踏上AI职业认证之路:Microsoft 和 LinkedIn 生成式 AI 认证指南

随着人工智能技术的飞速发展,越来越多的人开始对AI产生浓厚的兴趣,然而,如何正式踏入这一领域并获得权威认证,成为从事AI职业的重要一环。今天,我将为大家介绍一个优质的入门课程,不仅能让你对AI有全面的了解,还能通过考试获得认证,进一步提升你的职业竞争力。生成式 AI 是一个充满机会的领域,Microsoft 和 LinkedIn 的职业认证课程为任何想要进入这一领域的人提供了一个绝佳的起点。课程内容覆盖了AI的发展历史、目前的主要技术及其应用场景,帮助你全面了解AI,并为下一步的深入学习打下坚实的基础。
原创
发布博客 2024.10.12 ·
783 阅读 ·
23 点赞 ·
0 评论 ·
11 收藏

AntSK:在无网络环境中构建你的本地AI知识库的终极指南

不仅是一个免费的开源工具,更是一个完全离线运行的AI解决方案,不仅支持OpenAI,Azure OpenAI ,星火,阿里灵积大模型,他还集成了Ollama与LLamaFactory,使得在本地计算机上运行模型变成了可能。AntSK项目是开源的,这意味着您可以参与其社区讨论,提交您的建议与反馈,共同推动项目的进步。此外,随着人工智能的快速发展,我们可以期待AntSK未来的升级与增强,帮助更多用户构建属于他们的AI知识库。教育与培训:在教育领域中,AntSK可以作为一个工具,帮助学生进行知识的复习与扩展。
原创
发布博客 2024.10.12 ·
785 阅读 ·
30 点赞 ·
0 评论 ·
10 收藏

《黑神话:悟空》——中国游戏的工业奇迹与AI技术的力量

虽然“鸡小蟹”主要提供了AI支持和强大的性能,以支持用户畅玩市面上的游戏大作,包括《黑神话:悟空》,但它并不直接构成游戏中的AI元素。一块性能出色的显卡,如RTX 4060,不仅能够带来流畅的游戏体验,还能在学习和工作中提供强大的图形处理能力,实现学习娱乐两不误。孙悟空这个角色,作为中国文化的超级大IP,与游戏技术的结合,诞生了这个超级爆款。此外,对于高端用户,RTX 4090D作为目前性能最强的显卡之一,虽然价格不菲,但提供了无与伦比的处理能力和图形性能,适合那些需要极致性能的专业用户和游戏发烧友。
原创
发布博客 2024.10.11 ·
809 阅读 ·
24 点赞 ·
0 评论 ·
9 收藏

使用 Ollama 集成 GraphRag.Net:一步步教你如何实现

Ollama 是一个可以轻松管理和运行 AI 模型的平台,使用它可以快速上手并进行模型的训练和推理。通过 Ollama,你可以在本地部署多种模型,从而减少 API 调用的成本,提高响应速度。
原创
发布博客 2024.10.11 ·
1073 阅读 ·
40 点赞 ·
0 评论 ·
9 收藏

AI革命新篇章:OpenAI发布API新特性,开发者如何利用Structured Outputs打造智能应用

结构化输出功能是OpenAI API的一项重大更新,它允许AI模型的输出与开发者定义的JSON Schemas完全匹配。这意味着开发者可以精确控制AI模型的输出格式,确保数据的准确性和一致性。功能背后的技术原理OpenAI通过训练新的模型来理解复杂的JSON Schemas,并采用一种称为受限采样或受限解码的技术,确保模型输出的有效性。这一技术的核心在于,将JSON Schema转换为上下文无关文法(CFG),并在模型采样过程中动态确定哪些标记是有效的。结构化输出的应用场景。
原创
发布博客 2024.10.09 ·
816 阅读 ·
22 点赞 ·
0 评论 ·
20 收藏

深入解析Semantic Kernel的编码误区:如何让本地模型“不再犯傻”

然而,在使用Semantic Kernel时,如果不注意一些细节问题,可能会导致你的模型表现异常,甚至出现“胡说八道”的情况。今天,我将分享一个关于使用Semantic Kernel的小细节,这个问题曾让我一度陷入困惑,幸好最终找到了问题的根源。在我的一个项目中,我遇到了一个奇怪的问题:当我使用OpenAI时,模型表现非常智能,但是一旦切换到本地模型,输出结果就变得非常“经过以上调整后,我们再次验证请求内容,可以发现请求已经恢复为正常的中文编码,本地模型的表现也随之恢复正常。目前我的猜测是,在使用。
原创
发布博客 2024.10.09 ·
799 阅读 ·
13 点赞 ·
0 评论 ·
7 收藏

解锁GraphRag.Net的无限可能:手把手教你集成国产模型和本地模型

解锁GraphRag.Net的无限可能:手把手教你集成国产模型和本地模型
原创
发布博客 2024.10.08 ·
478 阅读 ·
9 点赞 ·
0 评论 ·
9 收藏

成长之路:我的技术布道之路回顾

再来是CSDN,这是我最近刚刚开始的一个新平台,没想到短短的时间里我的文章阅读量已经破了9万,并且有了1200名关注者。首先是B站,去年正式开始做短视频,从最开始的零播放量,到现在已经有了15万的播放量和2900粉丝。这一年对我来说是满满的一年,我在技术布道的道路上取得了一些小小的成绩,也收获了很多宝贵的经验。同时,也很开心能够顺利考上了研究生,正好赶上老婆今年毕业,这对我们未来的职业发展有着重要的意义。我们的开源项目也荣获了1.1k的star,以及我们的AIDotnet社区也有非常多的关注者。
原创
发布博客 2024.10.08 ·
477 阅读 ·
12 点赞 ·
0 评论 ·
7 收藏

手把手教你集成GraphRag.Net:打造智能图谱搜索系统

由于当前导入仅支持文本数据,在实际项目中,可以结合Kernel Memory的自定义Handler来导入不同格式的文档。在成功添加NuGet包后,我们需要在程序的启动文件中进行依赖注入配置。在完成配置后,我们就可以开始使用GraphRag.Net提供的强大的图谱服务功能了。在人工智能和大数据发展的背景下,我们常常需要在项目中实现知识图谱的应用,以便快速、准确地检索和使用信息。,这是一个参考GraphRag实现的.NET版本,能够实现图谱数据的存储、检索、和问答功能。中进行依赖注入:​​​​​​​。
原创
发布博客 2024.10.07 ·
451 阅读 ·
10 点赞 ·
0 评论 ·
9 收藏

用.Net实现GraphRag:从零开始构建智能知识图谱

通过实践,不仅可以加深对RAG和知识图谱技术的理解,还能在项目中不断学习和成长。是基于RAG技术的进一步发展,将传统的RAG问答系统与知识图谱结合起来,使得问答系统在处理复杂问题时更加高效和准确。通过这种方式,我们不仅能够利用强大的大模型进行信息检索和生成,还能借助知识图谱的关系网络进一步提升信息的精确度和上下文理解能力。扩展问答系统的智能化:通过引入更多的语义分析技术,让问答系统能够处理更加复杂和多样化的问题。优化用户交互体验:提升界面的友好性和用户交互的流畅度,构建一个更易用的系统。
原创
发布博客 2024.10.07 ·
651 阅读 ·
15 点赞 ·
0 评论 ·
17 收藏

探索 GraphRAG:从存储到查询,深入解析 NebulaGraph 与传统 SQL 的对比

NebulaGraph 是一款开源的图数据库,专注于处理拥有千亿个顶点和万亿条边的超大规模数据集。其独特之处在于提供毫秒级查询延时的性能,使其能够在社交媒体、实时推荐、网络安全、金融风控、知识图谱和人工智能等大规模生产场景中广泛应用。
原创
发布博客 2024.10.06 ·
1084 阅读 ·
20 点赞 ·
0 评论 ·
15 收藏

使用Kernel Memory进行RAG评估:AI助力企业知识管理新突破

随着AI技术的不断发展和成熟,未来我们可以期待更多类似的工具和方法被开发和应用,为企业的智能化转型提供更强大的支持。在Evaluation项目中,我们可以看到代码量并不大主要是提示词这里需要注意的是,Kernel Memory的提示词为英文,这里对中文的效果可能会打折扣,于是乎我把它平移翻译为中文来进行测试。通过结合Kernel Memory的Evaluation模块和AntSK项目,我们不仅可以实现高效的文档管理和评估,还能为企业带来更多的创新和提升整体效率。最后,我们生成测试集,并打印每个测试的问题。
原创
发布博客 2024.10.06 ·
945 阅读 ·
19 点赞 ·
0 评论 ·
17 收藏

深度扩展AntSK,让.NET Aspire助力您的AI项目

作为一名开发者,我最近在自己的AI知识库项目AntSK中集成了.NET Aspire,这为我的项目注入了新的活力。如果你还不清楚什么是.NET Aspire,那你将通过这篇文章充分了解它,并且学会如何将其集成到你的项目中,大大提高项目的分布式能力和可观察性。通过这篇文章的介绍和指导,大家应该已经了解到.NET Aspire的强大之处以及如何将其无缝集成到你的AI项目中。简单来说,.NET Aspire 是一种具有高度主见性和云原生的技术堆栈,专门为打造可观察的、生产就绪的分布式应用程序而设计。
原创
发布博客 2024.10.05 ·
1549 阅读 ·
18 点赞 ·
0 评论 ·
21 收藏
加载更多