洛谷 P2656 采蘑菇

该博客介绍了洛谷P2656题目的解法,涉及采蘑菇的动态规划算法。作者建议使用SPFA求最长路的方法,通过Tarjan缩点将有向图转换为无环图,计算每个强连通分量的蘑菇总数,最后求最长路。在实现过程中,需要注意避免精度问题,可以先将蘑菇恢复系数扩大10倍,处理后再除以10。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题意描述:

N 个草丛,M 条单向的小道,经过每条道时可以采走这条道上的所有蘑菇,蘑菇有一个恢复系数,即在采过这一片蘑菇后又会新长出蘑菇,求从给定的点出发能采到的蘑菇最大值。

算法分析:

很容易想到最后要求一个最大值,可以用树形 DP,不过本人比较懒,推荐 spfa 求最长路,既好理解又好写。

首先明确一点,如果走到一个环中,里面的所有蘑菇包括每一次恢复后新长出来的蘑菇都能采到。

于是想到了什么? Tarjan 缩点,成为一个有向无环图,把每一个强连通分量里面的蘑菇总数求出来,最后跑一边最长路即可。

然后要注意细节:这道题不需要用 double 存,会有精度问题。可以在存图的时候先把 k 乘 10,在后面的处理中把 k 除以 10 就行了。

代码+注释:

#include<bits/stdc++.h>
using namespace std;
inline int read(){ //快读不解释了
    int x=0,f=1;char ch=getchar();
    while(ch<'0'||ch>'9'){if(ch == '-') f=-1 ; ch=getchar();}
    while(ch>='0
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值