首先我们可以发现,当 n ≥ 2 n \geq 2 n≥2 的时候,任意两个相邻的点不可能同为好节点 ( ( (因为一定有其它节点破坏他们两个相等 ) ) )。当 n = 2 n = 2 n=2 的时候,特判掉即可。
我们考虑如何进行树形 D P DP DP,设 f [ u ] [ 1 / 0 ] f[u][1/0] f[u][1/0] 表示在以 u u u 为根的子树中, u u u 是好节点 ( f [ u ] [ 1 ] ) (f[u][1]) (f[u][1]) 或者不是好节点 ( f [ u ] [ 0 ] ) (f[u][0]) (f[u][0]) 的时候,最多能有多少个好节点。在转移的过程中 ,因为有上述的性质,所以当钦定 u u u 为好节点时,它的孩子 v v v 只能不是好节点,当 u u u 不是好节点时,它的孩子 v v v 可以是好节点,也可以不是好节点。
我们将 D P DP DP 的数组定义一个 p a i r pair pair, f i r s t first first 表示好节点的数目, s e c o n d second second