CF1646D题解

这篇博客介绍了如何解决CF1646D题目,探讨了当n大于等于2时,相邻节点不能同时为好节点的情况。博主通过树形动态规划(DP)进行分析,定义了f[u][1/0]表示以u为根的子树中,u是好节点或不是好节点时的好节点最大数量。在转移过程中,利用性质确定孩子的状态,并以first表示好节点数,second表示相应和。最后通过贪心策略找到最优解,并通过DFS输出方案。
摘要由CSDN通过智能技术生成

传送门

在这里插入图片描述
首先我们可以发现,当 n ≥ 2 n \geq 2 n2 的时候,任意两个相邻的点不可能同为好节点 ( ( (因为一定有其它节点破坏他们两个相等 ) ) )。当 n = 2 n = 2 n=2 的时候,特判掉即可。

我们考虑如何进行树形 D P DP DP,设 f [ u ] [ 1 / 0 ] f[u][1/0] f[u][1/0] 表示在以 u u u 为根的子树中, u u u 是好节点 ( f [ u ] [ 1 ] ) (f[u][1]) (f[u][1]) 或者不是好节点 ( f [ u ] [ 0 ] ) (f[u][0]) (f[u][0]) 的时候,最多能有多少个好节点。在转移的过程中 ,因为有上述的性质,所以当钦定 u u u 为好节点时,它的孩子 v v v 只能不是好节点,当 u u u 不是好节点时,它的孩子 v v v 可以是好节点,也可以不是好节点。

我们将 D P DP DP 的数组定义一个 p a i r pair pair f i r s t first first 表示好节点的数目, s e c o n d second second

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值