基于海量数据的关联规则挖掘(十二)

本文深入探讨了在大规模数据集上进行关联规则挖掘的技术,引用了Agrawal等人在1993年SIGMOD会议上关于在大型数据库中挖掘物品集间关联规则的研究。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

参考文献

1 R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between sets of items in large databases. Proceedings of the ACM SIGMOD Conference on Management of data, pp. 207-216, 1993.

2 A. Savasere, E. Omiecinski, and S. Navathe. An efficient algorithm for mining association rules in large databases. Proceedings of the 21st International Conference on Very large Database, 1995
3 J. S. Park, M. S. Chen, and P. S. Yu. An effective hash-based algorithm for mining association rules. Proceedings of ACM SIGMOD International Conference on Management of Data, pages 175-186, San Jose, CA, May 1995.
4 H. Mannila, H. Toivonen, and A. Verkamo. Efficient algorithm for discovering association  rules. AAAI Workshop on Knowledge Discovery in Databases, 1994, pp. 181-192.
5 J.Han,J.Pei,and Y.Yin.Mining frequent patterns without candidate generation.In Proc.2000 ACM-SIGMOD Int.Conf.Management of Data(SIGMOD’00),Dalas,TX,May 2000.
6 Edith Cohen, Mayur Datar, Shinji Fujiwara, Aristides Gionis, Piotr Indyk, Rajeev Motwani, Jeffrey D.Ullman, Cheng Yang. Finding Interesting Associations without Support Pruning. 1999
7 M. Fang, N. Shivakumar, H. Garcia-Molina, R. Motwani, and J. D. Ullman, “Computing iceberg queries efficiently,” Intl. Conf. on Very Large Databases, pp. 299-310, 1998.
8 H. Toivonen, “Sampling large databases for association rules,” Intl. Conf. on Very Large Databases, pp. 134–145, 1996.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值