好长时间没写博客了,最近还是做了些题,不过都是老题经典题就懒的写了,这道题是好久好久以前的OI题以至于我找不到提交的地方,是在刘汝佳入门经典上的,觉得好玩就写写实现下,不过写了才发觉没那么容易,对迭代加深搜索理解了许多,其实就是一个规定深度的DFS,另外这题那个最好的分数表达方式让我绞尽脑汁才想出来,其实是一开始有地方没写对,还有很关键的是剪枝,根据给出的深度maxdep和当前的深度dep和前面选择的分母a,可以算出当前最小的分数,如果比这个还小那么在maxdep里就找不到解了,分数最小分母最大,那么当前选择分母的大小就是——比上一个选择的大,比这个计算出来的最大分母小。还有如果已经有一个解了,那么之后的搜索的分母值必须比那个解最后一项的分母要小。这一项也很重要。
描述 Description
在古埃及,人们使用单位分数的和(形如1/a的, a是自然数)表示一切有理数。如:2/3=1/2+1/6,但不允许2/3=1/3+1/3,因为加数中有相同的。对于一个分数a/b,表示方法有很多种,但是哪种最好呢?首先,加数少的比加数多的好,其次,加数个数相同的,最小的分数越大越好。
如:19/45=1/3 + 1/12 + 1/180
19/45=1/3 + 1/15 + 1/45
19/45=1/3 + 1/18 + 1/30,
19/45=1/4 + 1/6 + 1/180
19/45=1/5 + 1/6 + 1/18.
最好的是最后一种,因为1/18比1/180,1/45,1/30,1/180都大。
给出a,b(0<a<b<1000),编程计算最好的表达方式。
输入:a b
输出:若干个数,自小到大排列,依次是单位分数的分母。
样例输入 Sample Input
19 45
样例输出 Sample Output
5 6 18
给一组数据吧
523/547=1/2+1/4+1/5+1/180+1/2735+1/4923
这个对了,可以说这个程序就写对了,毕竟第一次写这种,也是刚学dfs没多久,代码风格不太好。见谅!
还有我的程序自我感觉还是不够快,不过我没想出其他剪枝的方法了。
#include<cstdio>
#include<ctype.h>
#include<algorithm>
#include<iostream>
#include<cstring>
#include<vector>
#include<cmath>
using namespace std;
int x[2],ans[100];//第一个是保存分数的分子和分母,后一个是答案
bool flag = false;
inline int gcd(int x,int y)//辗转相除法
{
int k = x%y;
while(k)
{
x = y;
y = k;
k = x%y;
}
return y;
}
bool sub(int a,int b,int c,int d)//分数减法
{
int fenzi = a*d - b*c;
int fenmu = b*d;
if(fenzi < 0 || fenmu < 0)
return false;
int w = gcd(fenzi,fenmu);
x[0] = fenzi/w;
x[1] = fenmu/w;
return true;
}
bool dfs(int dep,int a,int b,int c,int maxdep)
{
bool ff = false;
if(a == 0)
return true;
if(dep >= maxdep)
return false;
int k1 = ((double)(maxdep - dep))/((double)a/(double)b);//当前深度需要最小分数的最大分母
for(int i = c+1; i <= k1 ; i++)
{
if(flag)
if(i >= ans[maxdep-1])//如果已经找到了,那么之后找的所有分母必须比找到那个解的最后一项分母要小
break;
if(!sub(a,b,1,i))
continue;
if(dfs(dep+1,x[0],x[1],i,maxdep))
{
if(dep == maxdep-1 && flag)
if(i > ans[dep])
return false;
ff = flag = true;//已经找到了
ans[dep] = i;
}
}
if(ff) return true;
return false;
}
int main()
{
// freopen("input.txt","r",stdin);
int a,b,k = 1;
scanf("%d%d",&a,&b);
while(!flag)
{
dfs(0,a,b,0,k);
k++;
}
for(int i = 0; i < k-1; i++)
{
printf("1/%d",ans[i]);
if(i != k-2)
printf("+");
}
printf("\n");
return 0;
}