唉。。当时板子找不到了,然后从网上找了个板子。。。结果板子有错。。减法的一个地方写错了。比赛完才找到。。简直坑
以后就用这个板子了。
这道题我比较蠢,是把2进制转成十进制再用大数的GCD,因为没有重载大数与大数的除法,所以不能用欧几里德。
有几个规律
1. 如果a,b是偶数那么gcd(a,b) = gcd(a/2,b/2)*2
2.如果a是偶数b是奇数,那么gcd(a,b) = gcd(a/2,b).
3.如果a,b都是奇数,且a>b那么gcd(a,b) = gcd((a-b)/2,b)
都很好证明就不说了。用这个办法可以很轻松的算出大数与大数的gcd,用二进制模拟也是一样的。时间复杂度是o(log(max(a,b)))级别的因为每步至少其中一个都除了一个2。
但是要注意不能写成递归形式不然会爆栈,手工扩栈可以解决~不过直接写循环很简单的~
AC代码:
#include<cstdio>
#include<ctype.h>
#include<algorithm>
#include<iostream>
#include<cstring>
#include<vector>
#include<cstdlib>
#include<stack>
#include<cmath>
#include<queue>
#include<set>
#include<map>
#include<ctime>
#include<string.h>
#include<string>
#include<bitset>
using namespace std;
#define ll __int64
#define eps 1e-10
#define MOD 20071027
#define MAXN 9999
#define MAXSIZE 10
#define DLEN 4
template<class T>
inline void scan_d(T &ret)
{
char c;
int flag = 0;
ret=0;
while(((c=getchar())<'0'||c>'9')&&c!='-');
if(c == '-')
{
flag = 1;
c = getchar();
}
while(c>='0'&&c<='9') ret=ret*10+(c-'0'),c=getchar();
if(flag) ret = -ret;
}
class BigNum
{
public:
int a[100]; //可以控制大数的位数
int len; //大数长度
BigNum(){ len = 1;memset(a,0,sizeof(a)); } //构造函数
BigNum(const int); //将一个int类型的变量转化为大数
BigNum(const char*); //将一个字符串类型的变量转化为大数
BigNum(const BigNum &); //拷贝构造函数
BigNum &operator=(const BigNum &); //重载赋值运算符,大数之间进行赋值运算
friend istream& operator>>(istream&, BigNum&); //重载输入运算符
friend ostream& operator<<(ostream&, BigNum&); //重载输出运算符
BigNum operator+(const BigNum &) const; //重载加法运算符,两个大数之间的相加运算
BigNum operator-(const BigNum &) const; //重载减法运算符,两个大数之间的相减运算
BigNum operator*(const BigNum &) const; //重载乘法运算符,两个大数之间的相乘运算
BigNum operator/(const int &) const; //重载除法运算符,大数对一个整数进行相除运算
BigNum operator^(const int &) const; //大数的n次方运算
BigNum operator>>(const int &) const;
BigNum operator<<(const int &) const;
int operator%(const int &) const; //大数对一个int类型的变量进行取模运算
bool operator>(const BigNum & T)const; //大数和另一个大数的大小比较
bool operator>(const int & t)const; //大数和一个int类型的变量的大小比较
bool operator<(const BigNum & T)const;
bool operator<(const int & t)const;
bool operator==(const BigNum & T)const;
bool operator==(const int & t)const;
void print(); //输出大数
};
BigNum::BigNum(const int b) //将一个int类型的变量转化为大数
{
int c,d = b;
len = 0;
memset(a,0,sizeof(a));
while(d > MAXN)
{
c = d - (d / (MAXN + 1)) * (MAXN + 1);
d = d / (MAXN + 1);
a[len++] = c;
}
a[len++] = d;
}
BigNum::BigNum(const char*s) //将一个字符串类型的变量转化为大数
{
int t,k,index,l,i;
memset(a,0,sizeof(a));
l=strlen(s);
len=l/DLEN;
if(l%DLEN)
len++;
index=0;
for(i=l-1;i>=0;i-=DLEN)
{
t=0;
k=i-DLEN+1;
if(k<0)
k=0;
for(int j=k;j<=i;j++)
t=t*10+s[j]-'0';
a[index++]=t;
}
}
BigNum::BigNum(const BigNum & T) : len(T.len) //拷贝构造函数
{
int i;
memset(a,0,sizeof(a));
for(i = 0 ; i < len ; i++)
a[i] = T.a[i];
}
BigNum & BigNum::operator=(const BigNum & n) //重载赋值运算符,大数之间进行赋值运算
{
int i;
len = n.len;
memset(a,0,sizeof(a));
for(i = 0 ; i < len ; i++)
a[i] = n.a[i];
return *this;
}
istream& operator>>(istream & in, BigNum & b) //重载输入运算符
{
char ch[MAXSIZE*4];
int i = -1;
in>>ch;
int l=strlen(ch);
int count=0,sum=0;
for(i=l-1;i>=0;)
{
sum = 0;
int t=1;
for(int j=0;j<4&&i>=0;j++,i--,t*=10)
{
sum+=(ch[i]-'0')*t;
}
b.a[count]=sum;
count++;
}
b.len =count++;
return in;
}
ostream& operator<<(ostream& out, BigNum& b) //重载输出运算符
{
int i;
cout << b.a[b.len - 1];
for(i = b.len - 2 ; i >= 0 ; i--)
{
cout.width(DLEN);
cout.fill('0');
cout << b.a[i];
}
return out;
}
BigNum BigNum::operator>>(const int &k) const
{
BigNum t(*this);
int p = k;
while(p)
{
t = t/2;
p--;
}
return t;
}
BigNum BigNum::operator<<(const int &k) const
{
BigNum t(*this);
int p = k;
while(p)
{
t = t*2;
p--;
}
return t;
}
BigNum BigNum::operator+(const BigNum & T) const //两个大数之间的相加运算
{
BigNum t(*this);
int i,big; //位数
big = T.len > len ? T.len : len;
for(i = 0 ; i < big ; i++)
{
t.a[i] +=T.a[i];
if(t.a[i] > MAXN)
{
t.a[i + 1]++;
t.a[i] -=MAXN+1;
}
}
if(t.a[big] != 0)
t.len = big + 1;
else
t.len = big;
return t;
}
BigNum BigNum::operator-(const BigNum & T) const //两个大数之间的相减运算
{
int i,j,big;
bool flag;
BigNum t1,t2;
if(*this>T)
{
t1=*this;
t2=T;
flag=0;
}
else
{
t1=T;
t2=*this;
flag=1;
}
big=t1.len;
for(i = 0 ; i < big ; i++)
{
if(t1.a[i] < t2.a[i])
{
j = i + 1;
while(t1.a[j] == 0)
j++;
t1.a[j--]--;
while(j > i)
t1.a[j--] += MAXN;
t1.a[i] += MAXN + 1 - t2.a[i];
}
else
t1.a[i] -= t2.a[i];
}
t1.len = big;
while(t1.a[t1.len - 1] == 0 && t1.len > 1)
{
t1.len--;
big--;
}
if(flag)
t1.a[big-1]=0-t1.a[big-1];
return t1;
}
BigNum BigNum::operator*(const BigNum & T) const //两个大数之间的相乘运算
{
BigNum ret;
int i,j,up;
int temp,temp1;
for(i = 0 ; i < len ; i++)
{
up = 0;
for(j = 0 ; j < T.len ; j++)
{
temp = a[i] * T.a[j] + ret.a[i + j] + up;
if(temp > MAXN)
{
temp1 = temp - temp / (MAXN + 1) * (MAXN + 1);
up = temp / (MAXN + 1);
ret.a[i + j] = temp1;
}
else
{
up = 0;
ret.a[i + j] = temp;
}
}
if(up != 0)
ret.a[i + j] = up;
}
ret.len = i + j;
while(ret.a[ret.len - 1] == 0 && ret.len > 1)
ret.len--;
return ret;
}
BigNum BigNum::operator/(const int & b) const //大数对一个整数进行相除运算
{
BigNum ret;
int i,down = 0;
for(i = len - 1 ; i >= 0 ; i--)
{
ret.a[i] = (a[i] + down * (MAXN + 1)) / b;
down = a[i] + down * (MAXN + 1) - ret.a[i] * b;
}
ret.len = len;
while(ret.a[ret.len - 1] == 0 && ret.len > 1)
ret.len--;
return ret;
}
int BigNum::operator %(const int & b) const //大数对一个int类型的变量进行取模运算
{
int i,d=0;
for (i = len-1; i>=0; i--)
{
d = ((d * (MAXN+1))% b + a[i])% b;
}
return d;
}
BigNum BigNum::operator^(const int & n) const //大数的n次方运算
{
BigNum t,ret(1);
int i;
if(n<0)
exit(-1);
if(n==0)
return 1;
if(n==1)
return *this;
int m=n;
while(m>1)
{
t=*this;
for( i=1;i<<1<=m;i<<=1)
{
t=t*t;
}
m-=i;
ret=ret*t;
if(m==1)
ret=ret*(*this);
}
return ret;
}
bool BigNum::operator>(const BigNum & T) const //大数和另一个大数的大小比较
{
int ln;
if(len > T.len)
return true;
else if(len == T.len)
{
ln = len - 1;
while(ln >= 0 && a[ln] == T.a[ln])
ln--;
if(ln >= 0 && a[ln] > T.a[ln])
return true;
else
return false;
}
else
return false;
}
bool BigNum::operator > (const int & t) const //大数和一个int类型的变量的大小比较
{
BigNum b(t);
return *this>b;
}
bool BigNum::operator == (const BigNum & T)const
{
if(len!=T.len) return false;
int ln = len-1;
int flag = 0;
while(ln >= 0 && a[ln] == T.a[ln]) ln--;
if(ln == -1) return true;
return false;
}
bool BigNum::operator == (const int & t)const
{
BigNum b(t);
return *this==b;
}
bool BigNum::operator < (const BigNum & T) const
{
if(!(*this>T)&&!(*this==T)) return true;
return false;
}
bool BigNum::operator < (const int & t) const
{
BigNum b(t);
return *this<b;
}
void BigNum::print() //输出大数
{
int i;
cout << a[len - 1];
for(i = len - 2 ; i >= 0 ; i--)
{
cout.width(DLEN);
cout.fill('0');
cout << a[i];
}
cout << endl;
}
bool iseven(BigNum x)
{
if(x.a[0]%2==0) return true;
return false;
}
char a[2005],b[2005];
BigNum gcd(BigNum a,BigNum b)
{
BigNum k = 1,ans;
while(1)
{
if(a == 0)
{
ans = b;
break;
}
if(b == 0)
{
ans = a;
break;
}
if(a < b)
{
BigNum temp = a;
a = b;
b = temp;
}
else
{
if(iseven(a))
{
if(iseven(b))
{
a = a / 2;
b = b / 2;
k=k*2;
}
else
{
a = a/2;
}
}
else
{
if(iseven(b)) b = b/2;
else a = (a-b)/2;
}
}
}
return ans*k;
}
int main()
{
#ifdef GLQ
freopen("input.txt","r",stdin);
// freopen("o4.txt","w",stdout);
#endif // GLQ
int t,i,j,cas=1;
scanf("%d",&t);
while(t--)
{
scanf("%s %s",a,b);
BigNum temp(1),t1(0),t2(0);
int len = strlen(a);
for(i = len-1; i >= 0; i--)
{
if(a[i] == '1') t1 = t1+temp;
temp = temp*2;
}
len = strlen(b);
temp = 1;
for(i = len-1; i >= 0; i--)
{
if(b[i] == '1') t2 = t2+temp;
temp = temp*2;
}
int tt[2005];
// t1 = "11498698008513698797986710471";
// t2 = "3733414046940010605264291687";
BigNum ans=gcd(t1,t2);
int k = 0;
while(!(ans==0))
{
if(ans%2==1)
tt[k++] = 1;
else tt[k++] = 0;
ans = ans/2;
}
printf("Case #%d: ",cas++);
for(i = k-1; i >= 0; i--)
printf("%d",tt[i]);
printf("\n");
}
return 0;
}