hdu 5050 Divided Land(高精度)

唉。。当时板子找不到了,然后从网上找了个板子。。。结果板子有错。。减法的一个地方写错了。比赛完才找到。。简直坑

以后就用这个板子了。

这道题我比较蠢,是把2进制转成十进制再用大数的GCD,因为没有重载大数与大数的除法,所以不能用欧几里德。

有几个规律

1. 如果a,b是偶数那么gcd(a,b) = gcd(a/2,b/2)*2

2.如果a是偶数b是奇数,那么gcd(a,b) = gcd(a/2,b).

3.如果a,b都是奇数,且a>b那么gcd(a,b) = gcd((a-b)/2,b)

都很好证明就不说了。用这个办法可以很轻松的算出大数与大数的gcd,用二进制模拟也是一样的。时间复杂度是o(log(max(a,b)))级别的因为每步至少其中一个都除了一个2。

但是要注意不能写成递归形式不然会爆栈,手工扩栈可以解决~不过直接写循环很简单的~

AC代码:

#include<cstdio>
#include<ctype.h>
#include<algorithm>
#include<iostream>
#include<cstring>
#include<vector>
#include<cstdlib>
#include<stack>
#include<cmath>
#include<queue>
#include<set>
#include<map>
#include<ctime>
#include<string.h>
#include<string>
#include<bitset>
using namespace std;
#define ll __int64
#define eps 1e-10
#define MOD 20071027
#define MAXN 9999
#define MAXSIZE 10
#define DLEN 4
template<class T>
inline void scan_d(T &ret)
{
    char c;
    int flag = 0;
    ret=0;
    while(((c=getchar())<'0'||c>'9')&&c!='-');
    if(c == '-')
    {
        flag = 1;
        c = getchar();
    }
    while(c>='0'&&c<='9') ret=ret*10+(c-'0'),c=getchar();
    if(flag) ret = -ret;
}

class BigNum
{
public:
    int a[100];    //可以控制大数的位数
    int len;       //大数长度
    BigNum(){ len = 1;memset(a,0,sizeof(a)); }   //构造函数
    BigNum(const int);       //将一个int类型的变量转化为大数
    BigNum(const char*);     //将一个字符串类型的变量转化为大数
    BigNum(const BigNum &);  //拷贝构造函数
    BigNum &operator=(const BigNum &);   //重载赋值运算符,大数之间进行赋值运算

    friend istream& operator>>(istream&,  BigNum&);   //重载输入运算符
    friend ostream& operator<<(ostream&,  BigNum&);   //重载输出运算符

    BigNum operator+(const BigNum &) const;   //重载加法运算符,两个大数之间的相加运算
    BigNum operator-(const BigNum &) const;   //重载减法运算符,两个大数之间的相减运算
    BigNum operator*(const BigNum &) const;   //重载乘法运算符,两个大数之间的相乘运算
    BigNum operator/(const int   &) const;    //重载除法运算符,大数对一个整数进行相除运算

    BigNum operator^(const int  &) const;    //大数的n次方运算
    BigNum operator>>(const int &) const;
    BigNum operator<<(const int &) const;
    int    operator%(const int  &) const;    //大数对一个int类型的变量进行取模运算
    bool   operator>(const BigNum & T)const;   //大数和另一个大数的大小比较
    bool   operator>(const int & t)const;      //大数和一个int类型的变量的大小比较
    bool   operator<(const BigNum & T)const;
    bool   operator<(const int & t)const;
    bool   operator==(const BigNum & T)const;
    bool   operator==(const int & t)const;
    void print();       //输出大数
};
BigNum::BigNum(const int b)     //将一个int类型的变量转化为大数
{
    int c,d = b;
    len = 0;
    memset(a,0,sizeof(a));
    while(d > MAXN)
    {
        c = d - (d / (MAXN + 1)) * (MAXN + 1);
        d = d / (MAXN + 1);
        a[len++] = c;
    }
    a[len++] = d;
}
BigNum::BigNum(const char*s)     //将一个字符串类型的变量转化为大数
{
    int t,k,index,l,i;
    memset(a,0,sizeof(a));
    l=strlen(s);
    len=l/DLEN;
    if(l%DLEN)
        len++;
    index=0;
    for(i=l-1;i>=0;i-=DLEN)
    {
        t=0;
        k=i-DLEN+1;
        if(k<0)
            k=0;
        for(int j=k;j<=i;j++)
            t=t*10+s[j]-'0';
        a[index++]=t;
    }
}
BigNum::BigNum(const BigNum & T) : len(T.len)  //拷贝构造函数
{
    int i;
    memset(a,0,sizeof(a));
    for(i = 0 ; i < len ; i++)
        a[i] = T.a[i];
}


BigNum & BigNum::operator=(const BigNum & n)   //重载赋值运算符,大数之间进行赋值运算
{
    int i;
    len = n.len;
    memset(a,0,sizeof(a));
    for(i = 0 ; i < len ; i++)
        a[i] = n.a[i];
    return *this;
}
istream& operator>>(istream & in,  BigNum & b)   //重载输入运算符
{
    char ch[MAXSIZE*4];
    int i = -1;
    in>>ch;
    int l=strlen(ch);
    int count=0,sum=0;
    for(i=l-1;i>=0;)
    {
        sum = 0;
        int t=1;
        for(int j=0;j<4&&i>=0;j++,i--,t*=10)
        {
            sum+=(ch[i]-'0')*t;
        }
        b.a[count]=sum;
        count++;
    }
    b.len =count++;
    return in;

}
ostream& operator<<(ostream& out,  BigNum& b)   //重载输出运算符
{
    int i;
    cout << b.a[b.len - 1];
    for(i = b.len - 2 ; i >= 0 ; i--)
    {
        cout.width(DLEN);
        cout.fill('0');
        cout << b.a[i];
    }
    return out;
}

BigNum BigNum::operator>>(const int &k) const
{
    BigNum t(*this);
    int p = k;
    while(p)
    {
        t = t/2;
        p--;
    }
    return t;
}

BigNum BigNum::operator<<(const int &k) const
{
    BigNum t(*this);
    int p = k;
    while(p)
    {
        t = t*2;
        p--;
    }
    return t;
}

BigNum BigNum::operator+(const BigNum & T) const   //两个大数之间的相加运算
{
    BigNum t(*this);
    int i,big;      //位数
    big = T.len > len ? T.len : len;
    for(i = 0 ; i < big ; i++)
    {
        t.a[i] +=T.a[i];
        if(t.a[i] > MAXN)
        {
            t.a[i + 1]++;
            t.a[i] -=MAXN+1;
        }
    }
    if(t.a[big] != 0)
        t.len = big + 1;
    else
        t.len = big;
    return t;
}
BigNum BigNum::operator-(const BigNum & T) const   //两个大数之间的相减运算
{
    int i,j,big;
    bool flag;
    BigNum t1,t2;
    if(*this>T)
    {
        t1=*this;
        t2=T;
        flag=0;
    }
    else
    {
        t1=T;
        t2=*this;
        flag=1;
    }
    big=t1.len;
    for(i = 0 ; i < big ; i++)
    {
        if(t1.a[i] < t2.a[i])
        {
            j = i + 1;
            while(t1.a[j] == 0)
                j++;
            t1.a[j--]--;
            while(j > i)
                t1.a[j--] += MAXN;
            t1.a[i] += MAXN + 1 - t2.a[i];
        }
        else
            t1.a[i] -= t2.a[i];
    }
    t1.len = big;
    while(t1.a[t1.len - 1] == 0 && t1.len > 1)
    {
        t1.len--;
        big--;
    }
    if(flag)
        t1.a[big-1]=0-t1.a[big-1];
    return t1;
}

BigNum BigNum::operator*(const BigNum & T) const   //两个大数之间的相乘运算
{
    BigNum ret;
    int i,j,up;
    int temp,temp1;
    for(i = 0 ; i < len ; i++)
    {
        up = 0;
        for(j = 0 ; j < T.len ; j++)
        {
            temp = a[i] * T.a[j] + ret.a[i + j] + up;
            if(temp > MAXN)
            {
                temp1 = temp - temp / (MAXN + 1) * (MAXN + 1);
                up = temp / (MAXN + 1);
                ret.a[i + j] = temp1;
            }
            else
            {
                up = 0;
                ret.a[i + j] = temp;
            }
        }
        if(up != 0)
            ret.a[i + j] = up;
    }
    ret.len = i + j;
    while(ret.a[ret.len - 1] == 0 && ret.len > 1)
        ret.len--;
    return ret;
}
BigNum BigNum::operator/(const int & b) const   //大数对一个整数进行相除运算
{
    BigNum ret;
    int i,down = 0;
    for(i = len - 1 ; i >= 0 ; i--)
    {
        ret.a[i] = (a[i] + down * (MAXN + 1)) / b;
        down = a[i] + down * (MAXN + 1) - ret.a[i] * b;
    }
    ret.len = len;
    while(ret.a[ret.len - 1] == 0 && ret.len > 1)
        ret.len--;
    return ret;
}
int BigNum::operator %(const int & b) const    //大数对一个int类型的变量进行取模运算
{
    int i,d=0;
    for (i = len-1; i>=0; i--)
    {
        d = ((d * (MAXN+1))% b + a[i])% b;
    }
    return d;
}
BigNum BigNum::operator^(const int & n) const    //大数的n次方运算
{
    BigNum t,ret(1);
    int i;
    if(n<0)
        exit(-1);
    if(n==0)
        return 1;
    if(n==1)
        return *this;
    int m=n;
    while(m>1)
    {
        t=*this;
        for( i=1;i<<1<=m;i<<=1)
        {
            t=t*t;
        }
        m-=i;
        ret=ret*t;
        if(m==1)
            ret=ret*(*this);
    }
    return ret;
}
bool BigNum::operator>(const BigNum & T) const   //大数和另一个大数的大小比较
{
    int ln;
    if(len > T.len)
        return true;
    else if(len == T.len)
    {
        ln = len - 1;
        while(ln >= 0 && a[ln] == T.a[ln])
            ln--;
        if(ln >= 0 && a[ln] > T.a[ln])
            return true;
        else
            return false;
    }
    else
        return false;
}

bool BigNum::operator > (const int & t) const    //大数和一个int类型的变量的大小比较
{
    BigNum b(t);
    return *this>b;
}

bool BigNum::operator == (const BigNum & T)const
{
    if(len!=T.len) return false;
    int ln = len-1;
    int flag = 0;
    while(ln >= 0 && a[ln] == T.a[ln]) ln--;
    if(ln == -1) return true;
    return false;
}

bool BigNum::operator == (const int & t)const
{
    BigNum b(t);
    return *this==b;
}

bool BigNum::operator < (const BigNum & T) const
{
    if(!(*this>T)&&!(*this==T)) return true;
    return false;
}

bool BigNum::operator < (const int & t) const
{
    BigNum b(t);
    return *this<b;
}

void BigNum::print()    //输出大数
{
    int i;
    cout << a[len - 1];
    for(i = len - 2 ; i >= 0 ; i--)
    {
        cout.width(DLEN);
        cout.fill('0');
        cout << a[i];
    }
    cout << endl;
}

bool iseven(BigNum x)
{
    if(x.a[0]%2==0) return true;
    return false;
}
char a[2005],b[2005];

BigNum gcd(BigNum a,BigNum b)
{
    BigNum k = 1,ans;
    while(1)
    {
        if(a == 0)
        {
            ans = b;
            break;
        }
        if(b == 0)
        {
            ans = a;
            break;
        }
        if(a < b)
        {
            BigNum temp = a;
            a = b;
            b = temp;
        }
        else
        {
            if(iseven(a))
            {
                if(iseven(b))
                {
                    a = a / 2;
                    b = b / 2;
                    k=k*2;
                }
                else
                {
                    a = a/2;
                }
            }
            else
            {
                if(iseven(b)) b = b/2;
                else a = (a-b)/2;
            }
        }

    }
    return ans*k;

}

int main()
{
#ifdef GLQ
    freopen("input.txt","r",stdin);
//    freopen("o4.txt","w",stdout);
#endif // GLQ
    int t,i,j,cas=1;
    scanf("%d",&t);
    while(t--)
    {
        scanf("%s %s",a,b);
        BigNum temp(1),t1(0),t2(0);
        int len = strlen(a);
        for(i = len-1; i >= 0; i--)
        {
            if(a[i] == '1') t1 = t1+temp;
            temp = temp*2;
        }
        len = strlen(b);

        temp = 1;
        for(i = len-1; i >= 0; i--)
        {
            if(b[i] == '1') t2 = t2+temp;
            temp = temp*2;
        }
        int tt[2005];
//        t1 = "11498698008513698797986710471";
//        t2 = "3733414046940010605264291687";
        BigNum ans=gcd(t1,t2);
        int k = 0;
        while(!(ans==0))
        {
            if(ans%2==1)
                tt[k++] = 1;
            else tt[k++] = 0;
            ans = ans/2;
        }

        printf("Case #%d: ",cas++);
        for(i = k-1; i >= 0; i--)
            printf("%d",tt[i]);
        printf("\n");
    }
    return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值