非常经典的题,为了学习下划分树,之后还要学习下主席树,2104其实是2761的简化,因为没有重复的数字,这个对于划分树来说是一个很大的不同,然后2761中说每个区间没有包含关系,所以可以排序询问后用二分答案+线段树(或树状数组),因为可以暴力删除之前加的点,加上现在的点,但是划分树不需要这个特殊条件。
划分树的原理其实相当简单,以中位数划分,小于等于中位数的放左边,大于的放右边,放的时候不改变数字的相对顺序。然后每个数需要一个标记,然后来一个标记前缀和,就可以知道某个区间到左子树的数有几个了。查询的原理自然也很容易想到就不说了。
如果有重复该怎么处理呢?事实上,只要能满足右子树的每一个都大于等于左子树的每一个就行了,如果有重复的就会出现左边的多于右边的,那么就会覆盖掉左边原来的东西,所以只需要算一下左边mid-l+1这个区间等于中位数的有x个,如果小于直接放左边,如果等于中位数且x不等于0,那么就可以放左边。再x--,这样处理就行了。
AC代码:
//#pragma comment(linker, "/STACK:102400000,102400000")
#include<cstdio>
#include<ctype.h>
#include<algorithm>
#include<iostream>
#include<cstring>
#include<vector>
#include<cstdlib>
#include<stack>
#include<queue>
#include<set>
#include<map>
#include<cmath>
#include<ctime>
#include<string.h>
#include<string>
#include<sstream>
#include<bitset>
using namespace std;
#define ll long long
#define ull unsigned long long
#define eps 1e-8
#define NMAX 201000
#define MOD 1000000
#define lson l,mid,rt<<1
#define rson mid+1,r,rt<<1|1
#define PI acos(-1)
template<class T>
inline void scan_d(T &ret)
{
char c;
int flag = 0;
ret=0;
while(((c=getchar())<'0'||c>'9')&&c!='-');
if(c == '-')
{
flag = 1;
c = getchar();
}
while(c>='0'&&c<='9') ret=ret*10+(c-'0'),c=getchar();
if(flag) ret = -ret;
}
const int maxn = 100010;
int T[21][maxn],s[21][maxn];
int a[maxn];
void build(int l, int r, int d)
{
if(l == r) return;
int mid = (l+r)>>1, j = l, k = mid+1,same = mid-l+1;
for(int i = l; i <= r; i++) if(T[d][i] < a[mid]) same--;
for(int i = l; i <= r; i++)
{
if(T[d][i] < a[mid] || (T[d][i] == a[mid] && same != 0))
{
if(i == l) s[d][i] = 1;
else s[d][i] = s[d][i-1]+1;
if(T[d][i] == a[mid]) same--;
T[d+1][j++] = T[d][i];
}
else
{
if(i == l) s[d][i] = 0;
else s[d][i] = s[d][i-1];
T[d+1][k++] = T[d][i];
}
}
build(l, mid, d+1);
build(mid+1, r, d+1);
}
int query(int k, int L, int R, int l, int r, int d)
{
if(L == R) return T[d][L];
int mid = (l+r)>>1;
int rcnt = s[d][R],lcnt = (L==l) ? 0 : s[d][L-1];
int tmp = rcnt - lcnt;
if(tmp >= k) return query(k, l+lcnt, l+rcnt-1, l, mid, d+1);
return query(k-tmp, mid+1+L-l-lcnt, mid+R-l+1-rcnt, mid+1, r, d+1);
}
int main()
{
#ifdef GLQ
freopen("input.txt","r",stdin);
// freopen("o2.txt","w",stdout);
#endif
int n,m;
while(~scanf("%d%d",&n,&m))
{
for(int i = 1; i <= n; i++)
{
// scanf("%d",&a[i]);
scan_d(a[i]);
T[0][i] = a[i];
}
sort(a+1,a+1+n);
build(1,n,0);
// for(int i = 0; i < 4; i++)
// {
// for(int j = 1; j <= 7; j++)
// cout<<T[i][j]<<" ";
// cout<<endl;
// }
while(m--)
{
int l,r,k;
// scanf("%d%d%d",&l,&r,&k);
scan_d(l); scan_d(r); scan_d(k);
printf("%d\n",query(k,l,r,1,n,0));
}
}
return 0;
}