HDU 4114 Disney's FastPass(状压dp)

题意就是给你一些点,有的地方有景区,有的地方有某些景点的优先票,拿优先票去景点和不拿的时间不一样。问从地点1出发去所有景点再回来的最短时间。

得把景点,景区进行状压。即dp[i][j][k]代表参观景点状态为i,景区状态为j,停在k的最短时间。

先floyd一下处理出最短路。

对于一种状态i,j,为了保证dp[i][j][k]在递推的时候是最短时间可以先用2个(1-n)for循环进行更新,因为可能有的位置的状态是-1即不存在。事实上只要有一个点存在i与j的状态,那么其他点必定都存在i,j这个状态。

然后再去更新去看景点的情况,在做过刚才那个处理后,其实只需要看当前位置下的景点就行,看网上其他人的代码则是遍历去看所有景点,如果这样做的话就不用先做那个处理了,可以放在一起做。

另外,还有一个优化,如果已经参观了那个节点,那么就强行给他一个票,其实就是在其他条件都相同的情况下(在同一个点,经过同样的景点),有票跟没票的比较。这样的话,参观景点的集合就是票的集合的子集了。然后又容易看出其实i跟j的递推顺序交换也是一样的,所以就用了枚举子集的办法,然后把子集从小到大推。

竟然刷到rank1了。577ms。

AC代码:

#include<cstdio>
#include<ctype.h>
#include<algorithm>
#include<iostream>
#include<cstring>
#include<vector>
#include<cstdlib>
#include<stack>
#include<queue>
#include<set>
#include<map>
#include<cmath>
#include<ctime>
#include<string.h>
#include<string>
#include<sstream>
#include<bitset>
using namespace std;
#define ll __int64
#define ull unsigned long long
#define eps 1e-8
#define NMAX 1<<29
#define MOD 1000000
#define lson l,mid,rt<<1
#define rson mid+1,r,rt<<1|1
#define PI acos(-1)
template<class T>
inline void scan_d(T &ret)
{
    char c;
    int flag = 0;
    ret=0;
    while(((c=getchar())<'0'||c>'9')&&c!='-');
    if(c == '-')
    {
        flag = 1;
        c = getchar();
    }
    while(c>='0'&&c<='9') ret=ret*10+(c-'0'),c=getchar();
    if(flag) ret = -ret;
}

int dp[1<<8][1<<8][55],dist[55][55];

struct node
{
    int t,ft;
};
node no[10];

inline void update(int &a, int b)
{
    if(a < 0 || a > b)
        a = b;
}

void floyd(int n)
{
    for(int k = 1; k <= n; k++)
        for(int i = 1; i <= n; i++)
            for(int j = 1; j <= n; j++)
                dist[i][j] = min(dist[i][j],dist[i][k]+dist[k][j]);
}

int pos[10],getft[55];
int s[1<<8];
int main()
{
#ifdef GLQ
    freopen("input.txt","r",stdin);
//    freopen("o.txt","w",stdout);
#endif
    int t,n,m,K,cas = 1;
    scanf("%d",&t);
    while(t--)
    {
        scanf("%d%d%d",&n,&m,&K);
        for(int i = 1; i <= n; i++)
        {
            for(int j = 1; j <= n; j++)
                dist[i][j] = NMAX;
            dist[i][i] = 0;
        }
        for(int i = 1; i <= m; i++)
        {
            int u,v,w;
            scanf("%d%d%d",&u,&v,&w);
            dist[u][v] = dist[v][u] = w;
        }
        floyd(n);
        memset(getft,0,sizeof(getft));
        for(int i = 0; i < K; i++)
        {
            int tmp;
            scanf("%d%d%d%d",&pos[i],&no[i].t,&no[i].ft,&tmp);
            while(tmp--)
            {
                int t1;
                scanf("%d",&t1);
                getft[t1] |= (1<<i);
            }
        }
        for(int i = 0; i < (1<<K); i++)
            for(int j = 0; j < (1<<K); j++)
                for(int k = 1; k <= n; k++) dp[i][j][k] = -1;
        dp[0][0][1] = 0;
        for(int j = 0; j < (1<<K); j++)
        {
            int nct = 0;
            for(int i = j; i ; i = (i-1)&j) s[nct++] = i;
            s[nct++] = 0;
            for(int w = nct-1; w >= 0; w--)
            {
                int i = s[w];
                for(int k = 1; k <= n; k++) if(dp[i][j][k] >= 0)
                {
                    for(int l = 0; l < K; l++) if(!(i&(1<<l)))
                    {
                        int cost = dist[k][pos[l]];
                        if(j&(1<<l)) cost += no[l].ft;
                        else cost += no[l].t;
                        update(dp[i|(1<<l)][j|getft[pos[l]]|(1<<l)][pos[l]],dp[i][j][k]+cost);
                    }
                    for(int l = 1; l <= n; l++)
                        update(dp[i][j|getft[l]][l],dp[i][j][k]+dist[k][l]);
                }
//                for(int k = 1; k <= n; k++) if(dp[i][j][k] >= 0)//这种递推就可以只看自己点上面的景点
//                {
//                    for(int l = 1; l <= n; l++)
//                        update(dp[i][j|getft[l]][l],dp[i][j][k]+dist[k][l]);
//                }
//                for(int k = 1; k <= n; k++) if(dp[i][j][k] >= 0)
//                {
//                    for(int l = 0; l < K; l++) if(!(i&(1<<l)))
//                    {
//                        if(pos[l] != k) continue;
//                        int cost;
//                        if(j&(1<<l)) cost = no[l].ft;
//                        else cost = no[l].t;
//                        update(dp[i|(1<<l)][j|getft[pos[l]]|(1<<l)][pos[l]],dp[i][j][k]+cost);
//                    }
//                }
            }
        }
        printf("Case #%d: %d\n",cas++,dp[(1<<K)-1][(1<<K)-1][1]);
    }
    return 0;
}



  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: hdu 2829 Lawrence 斜率优化dp 这道题是一道经典的斜率优化dp题目,需要用到单调队列的思想。 题目大意是给定一个序列a,求出一个序列b,使得b[i]表示a[1]~a[i]中的最小值,且满足b[i] = min{b[j] + (i-j)*k},其中k为给定的常数。 我们可以将上式拆开,得到b[i] = min{b[j] - j*k} + i*k,即b[i] = i*k + min{b[j] - j*k},这个式子就是斜率优化dp的形式。 我们可以用单调队列来维护min{b[j] - j*k},具体思路如下: 1. 首先将第一个元素加入队列中。 2. 从第二个元素开始,我们需要将当前元素加入队列中,并且需要维护队列的单调性。 3. 维护单调性的方法是,我们从队列的末尾开始,将队列中所有大于当前元素的元素弹出,直到队列为空或者队列中最后一个元素小于当前元素为止。 4. 弹出元素的同时,我们需要计算它们对应的斜率,即(b[j]-j*k)/(j-i),并将这些斜率与当前元素的斜率比较,如果当前元素的斜率更小,则将当前元素加入队列中。 5. 最后队列中的第一个元素就是min{b[j] - j*k},我们将它加上i*k就得到了b[i]的值。 6. 重复以上步骤直到处理完所有元素。 具体实现可以参考下面的代码: ### 回答2: HDU 2829 Lawrence 斜率优化 DP 是一道经典的斜率优化 DP 题目,其思想是通过维护一个下凸包来优化 DP 算法。下面我们来具体分析一下这道题目。 首先,让我们看一下该题目的描述。题目给定一些木棒,要求我们将这些木棒割成一些给定长度,且要求每种长度的木棒的数量都是一样的,求最小的割枝次数。这是一个典型的背包问题,而且在此基础上还要求每种长度的木棒的数量相同,这就需要我们在状态设计上走一些弯路。 我们来看一下状态的定义。定义 $dp[i][j]$ 表示前 $i$ 个木棒中正好能割出 $j$ 根长度为 $c_i$ 的木棒的最小割枝次数。对于每个 $dp[i][j]$,我们可以分类讨论: 1. 不选当前的木棒,即 $dp[i][j]=dp[i-1][j]$; 2. 选当前的木棒,即 $dp[i][j-k]=dp[i-1][j-k]+k$,其中 $k$ 是 $j/c_i$ 的整数部分。 现在问题再次转化为我们需要在满足等量限制的情况下,求最小的割枝次数。可以看出,这是一个依赖于 $c_i$ 的限制。于是,我们可以通过斜率优化 DP 来解决这个问题。 我们来具体分析一下斜率优化 DP 算法的思路。我们首先来看一下动态规划的状态转移方程 $dp[i][j]=\min\{dp[i-1][k]+x_k(i,j)\}$。可以发现,$dp[i][j]$ 的最小值只与 $dp[i-1][k]$ 和 $x_k(i,j)$ 有关。其中,$x_k(i,j)$ 表示斜率,其值为 $dp[i-1][k]-k\times c_i+j\times c_i$。 接下来,我们需要维护一个下凸包,并通过斜率进行优化。我们具体分析一下该过程。假设我们当前要计算 $dp[i][j]$。首先,我们需要找到当前点 $(i,j)$ 在凸包上的位置,即斜率最小值的位置。然后,我们根据该位置的斜率计算 $dp[i][j]$ 的值。接下来,我们需要将当前点 $(i,j)$ 加入到下凸包上。 我们在加入点的时候需要注意几点。首先,我们需要将凸包中所有斜率比当前点小的点移除,直到该点能够加入到凸包中为止。其次,我们需要判断该点是否能够加入到凸包中。如果不能加入到凸包中,则直接舍弃。最后,我们需要保证凸包中斜率是单调递增的,这就需要在加入新的点之后进行上一步操作。 以上就是该题目的解题思路。需要注意的是,斜率优化 DP 算法并不是万能的,其使用情况需要根据具体的问题情况来确定。同时,该算法中需要维护一个下凸包,可能会增加一些算法的复杂度,建议和常规 DP 算法进行对比,选择最优的算法进行解题。 ### 回答3: 斜率优化DP是一种动态规划优化算法,其主要思路是通过对状态转移方程进行变形,提高算法的时间复杂度。HDU2829 Lawrence问题可以用斜率优化DP解决。 首先,我们需要了解原问题的含义。问题描述如下:有$n$个人在数轴上,第$i$个人的位置为$A_i$,每个人可以携带一定大小的行李,第$i$个人的行李重量为$B_i$,但是每个人只能帮助没有他们重量大的人搬行李。若第$i$个人搬运了第$j$个人的行李,那么第$i$个人会累加$C_{i,j}=\left|A_i-A_j\right|\cdot B_j$的体力消耗。求$m$个人帮助每个人搬运行李的最小体力消耗。 我们可以通过斜率优化DP解决这个问题。记$f_i$为到前$i$个人的最小体力消耗,那么状态转移方程为: $$f_i=\min_{j<i}\{f_j+abs(A_i-A_j)\cdot B_i\}$$ 如果直接使用该方程,时间复杂度为$O(n^2)$,如果$n=10^4$,则需要计算$10^8$次,运算时间极长。斜率优化DP通过一些数学推导将方程变形,将时间复杂度降低到$O(n)$,大大缩短了计算时间。 通过斜率优化DP的推导式子,我们可以得到转移方程为: $$f_i=\min_{j<i}\{f_j+slope(j,i)\}$$ 其中,$slope(j,i)$表示直线$j-i$的斜率。我们可以通过如下方式来求解$slope(j,i)$: $$slope(j,i)=\frac{f_i-f_j}{A_i-A_j}-B_i-B_j$$ 如果$slope(j,i)\leq slope(j,k)$,那么$j$一定不是最优,可以直接舍去,降低计算时间。该算法的时间复杂度为$O(n)$。 综上所述,斜率优化DP是一种动态规划优化算法,可以大大缩短计算时间。在处理类似HDU2829 Lawrence问题的时候,斜率优化DP可以很好地解决问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值