HDU 2833 WuKong(floyd+dp)

本文详细介绍了如何利用Floyd算法解决最短路问题,特别关注了如何处理图中可能存在的自环,并通过实例展示了如何在实际问题中应用这一算法,以求得两个指定点之间的最短路上最多能包含的点数。

题意:给你一张图,以及2对点,要求这2对点的最短路上最多能有多少点是共有的。

在做floyd的时候加上一个数组num来代表从i到j最短路最多能有几个点。

然后枚举i,j,如果i到j是起点a到终点b的最短路上的,那么dis[a][b] = dis[a][i]+dis[i][j]+dis[j][b],或者 dis[a][b] = dis[b][i]+dis[i][j]+dis[j][a]

然后这题数据是会有自环的所以需要特判下。

AC代码:

#pragma comment(linker, "/STACK:102400000,102400000")
#include<cstdio>
#include<ctype.h>
#include<algorithm>
#include<iostream>
#include<cstring>
#include<vector>
#include<cstdlib>
#include<stack>
#include<queue>
#include<set>
#include<map>
#include<cmath>
#include<ctime>
#include<string.h>
#include<string>
#include<sstream>
#include<bitset>
using namespace std;
#define ll __int64
#define ull unsigned long long
#define eps 1e-8
#define NMAX 1000000000
#define MOD 1000000
#define lson l,mid,rt<<1
#define rson mid+1,r,rt<<1|1
#define PI acos(-1)
template<class T>
inline void scan_d(T &ret)
{
    char c;
    int flag = 0;
    ret=0;
    while(((c=getchar())<'0'||c>'9')&&c!='-');
    if(c == '-')
    {
        flag = 1;
        c = getchar();
    }
    while(c>='0'&&c<='9') ret=ret*10+(c-'0'),c=getchar();
    if(flag) ret = -ret;
}
int dist[305][305],num[305][305];

inline bool judge(int a, int b, int i, int j)
{
    if(dist[a][b] == dist[a][i]+dist[i][j]+dist[j][b])
        return true;
    return false;
}

int main()
{
#ifdef GLQ
    freopen("input.txt","r",stdin);
//    freopen("o.txt","w",stdout);
#endif
    int n,m;
    while(~scanf("%d%d",&n,&m) && n+m)
    {
        for(int i = 1; i <= n; i++)
            for(int j = 1; j <= n; j++)
                dist[i][j] = (i==j) ? 0 : NMAX;
        memset(num,0,sizeof(num));
        for(int i = 1; i <= m; i++)
        {
            int a,b,c;
            scanf("%d%d%d",&a,&b,&c);
            dist[a][b] = dist[b][a] = min(dist[a][b],c);
            if(a != b) num[a][b] = num[b][a] = 1;//有自环
        }
        for(int k = 1; k <= n; k++)
            for(int i = 1; i <= n; i++)
                for(int j = 1; j <= n; j++)
                {
                    if(dist[i][j] > dist[i][k]+dist[k][j])
                    {
                        dist[i][j] = dist[i][k]+dist[k][j];
                        num[i][j] = num[i][k]+num[k][j];
                    }
                    else if(dist[i][j] == dist[i][k]+dist[k][j] && num[i][j] < num[i][k]+num[k][j])
                        num[i][j] = num[i][k]+num[k][j];
                }
        int a,b,c,d;
        scanf("%d%d%d%d",&a,&b,&c,&d);
        int ans = -1;
        for(int i = 1; i <= n; i++)
            for(int j = 1; j <= n; j++)
                if(judge(a,b,i,j) && (judge(c,d,i,j) || judge(c,d,j,i)))
                    if(ans < num[i][j])
                        ans = num[i][j];
        printf("%d\n",ans+1);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值