题意:给你一张图,以及2对点,要求这2对点的最短路上最多能有多少点是共有的。
在做floyd的时候加上一个数组num来代表从i到j最短路最多能有几个点。
然后枚举i,j,如果i到j是起点a到终点b的最短路上的,那么dis[a][b] = dis[a][i]+dis[i][j]+dis[j][b],或者 dis[a][b] = dis[b][i]+dis[i][j]+dis[j][a]
然后这题数据是会有自环的所以需要特判下。
AC代码:
#pragma comment(linker, "/STACK:102400000,102400000")
#include<cstdio>
#include<ctype.h>
#include<algorithm>
#include<iostream>
#include<cstring>
#include<vector>
#include<cstdlib>
#include<stack>
#include<queue>
#include<set>
#include<map>
#include<cmath>
#include<ctime>
#include<string.h>
#include<string>
#include<sstream>
#include<bitset>
using namespace std;
#define ll __int64
#define ull unsigned long long
#define eps 1e-8
#define NMAX 1000000000
#define MOD 1000000
#define lson l,mid,rt<<1
#define rson mid+1,r,rt<<1|1
#define PI acos(-1)
template<class T>
inline void scan_d(T &ret)
{
char c;
int flag = 0;
ret=0;
while(((c=getchar())<'0'||c>'9')&&c!='-');
if(c == '-')
{
flag = 1;
c = getchar();
}
while(c>='0'&&c<='9') ret=ret*10+(c-'0'),c=getchar();
if(flag) ret = -ret;
}
int dist[305][305],num[305][305];
inline bool judge(int a, int b, int i, int j)
{
if(dist[a][b] == dist[a][i]+dist[i][j]+dist[j][b])
return true;
return false;
}
int main()
{
#ifdef GLQ
freopen("input.txt","r",stdin);
// freopen("o.txt","w",stdout);
#endif
int n,m;
while(~scanf("%d%d",&n,&m) && n+m)
{
for(int i = 1; i <= n; i++)
for(int j = 1; j <= n; j++)
dist[i][j] = (i==j) ? 0 : NMAX;
memset(num,0,sizeof(num));
for(int i = 1; i <= m; i++)
{
int a,b,c;
scanf("%d%d%d",&a,&b,&c);
dist[a][b] = dist[b][a] = min(dist[a][b],c);
if(a != b) num[a][b] = num[b][a] = 1;//有自环
}
for(int k = 1; k <= n; k++)
for(int i = 1; i <= n; i++)
for(int j = 1; j <= n; j++)
{
if(dist[i][j] > dist[i][k]+dist[k][j])
{
dist[i][j] = dist[i][k]+dist[k][j];
num[i][j] = num[i][k]+num[k][j];
}
else if(dist[i][j] == dist[i][k]+dist[k][j] && num[i][j] < num[i][k]+num[k][j])
num[i][j] = num[i][k]+num[k][j];
}
int a,b,c,d;
scanf("%d%d%d%d",&a,&b,&c,&d);
int ans = -1;
for(int i = 1; i <= n; i++)
for(int j = 1; j <= n; j++)
if(judge(a,b,i,j) && (judge(c,d,i,j) || judge(c,d,j,i)))
if(ans < num[i][j])
ans = num[i][j];
printf("%d\n",ans+1);
}
return 0;
}
本文详细介绍了如何利用Floyd算法解决最短路问题,特别关注了如何处理图中可能存在的自环,并通过实例展示了如何在实际问题中应用这一算法,以求得两个指定点之间的最短路上最多能包含的点数。
843

被折叠的 条评论
为什么被折叠?



