DML操作
1.Load
LOAD DATA [LOCAL] INPATH ‘filepath’ [OVERWRITE] INTO
TABLE tablename [PARTITION (partcol1=val1, partcol2=val2 …)]
说明:
1、 Load 操作只是单纯的复制/移动操作,将数据文件移动到 Hive 表对应的位置。
2、 filepath:
相对路径,例如:project/data1
绝对路径,例如:/user/hive/project/data1
包含模式的完整 URI,列如:
hdfs://namenode:9000/user/hive/project/data1
3、 LOCAL关键字
如果指定了 LOCAL, load 命令会去查找本地文件系统中的 filepath。
如果没有指定 LOCAL 关键字,则根据inpath中的uri 查找文件
4、 OVERWRITE 关键字
如果使用了 OVERWRITE 关键字,则目标表(或者分区)中的内容会被删除,然后再将 filepath 指向的文件/目录中的内容添加到表/分区中。
如果目标表(分区)已经有一个文件,并且文件名和 filepath 中的文件名冲突,那么现有的文件会被新文件所替代。
实例:
1)加载相对路径数据
2)加载绝对路径数据
3)加载包含模式数据
4)Overwrite关键字使用
2.Insert(将查询结果插入Hive表)
INSERT OVERWRITE TABLE tablename1 [PARTITION (partcol1=val1, partcol2=val2 …)] select_statement1 FROM from_statement
Multiple inserts:
FROM from_statement
INSERT OVERWRITE TABLE tablename1 [PARTITION (partcol1=val1, partcol2=val2 …)] select_statement1
[INSERT OVERWRITE TABLE tablename2 [PARTITION …] select_statement2] …
Dynamic partition inserts:
INSERT OVERWRITE TABLE tablename PARTITION (partcol1[=val1], partcol2[=val2] …) select_statement FROM from_statement
1)基本模式插入
2)多插入模式
3)自动分区模式
3.导出表数据
INSERT OVERWRITE [LOCAL] DIRECTORY directory1 SELECT … FROM …
multiple inserts:
FROM from_statement
INSERT OVERWRITE [LOCAL] DIRECTORY directory1 select_statement1
[INSERT OVERWRITE [LOCAL] DIRECTORY directory2 select_statement2] …
1)导出文件到本地
2)导出数据到HDFS
4.Select操作
SELECT [ALL | DISTINCT] select_expr, select_expr, …
FROM table_reference
[WHERE where_condition]
[GROUP BY col_list [HAVING condition]]
[CLUSTER BY col_list
| [DISTRIBUTE BY col_list] [SORT BY| ORDER BY col_list] ]
[LIMIT number]
1)order by会对输入做全局排序,因此只有一个reducer,会导致当输入规模较大时需要较长计算时间.
2)sort by不是全局排序,其在数据进入reducer前完成排序.因此如果有sort by进行排序,并且设置mapred.reduce.tasks>1,则sort by只保证每个reducer的输出有序,不保证全局有序.
3)distribute by根据distribute by指定的内容将数据分到同一个reducer.
4)cluster by除了具有distribute by的功能外,还会对该字段进行排序.因此,常常认为cluster by=distribute by+sort by.
实例:
1)获取年龄大的四个学生
2)查询学生信息按年龄降序排序(不保证全局有序)
3)按学生姓名汇总学生年龄
5.join操作
join_table:
table_reference JOIN table_factor [join_condition]
| table_reference {LEFT|RIGHT|FULL} [OUTER] JOIN table_reference join_condition
| table_reference LEFT SEMI JOIN table_reference join_condition
Hive支持等值连接(equality joins)、外连接(outer joins)和左右连接(left/right joins).Hive不支持非等值连接,因为非等值连接非常难转化到map/reduce任务.Hive支持多于2个表的连接.
1)只支持等值join
SELECT a.* FROM a JOIN b ON (a.id = b.id)
SELECT a.* FROM a JOIN b ON (a.id = b.id AND a.department = b.department)
2)可以join多于2个表
SELECT a.val, b.val, c.val FROM a JOIN b ON (a.key = b.key1) JOIN c ON (c.key = b.key2)
如果join中多个表的join key是同一个,则join会被转化为单个map/reduce任务.
SELECT a.val, b.val, c.val FROM a JOIN b ON (a.key = b.key1) JOIN c ON (c.key = b.key1)
被转化成单个map/reduce任务,因为join中稚使用了b.key1作为join key.
SELECT a.val, b.val, c.val FROM a JOIN b ON (a.key = b.key1) JOIN c ON (c.key = b.key2)
被转化成两个map/reduce任务,b.key1用以第一次join条件,b.key2用于第二次join条件.
3)join时,每次map/reduce任务的逻辑
reducer 会缓存 join 序列中除了最后一个表的所有表的记录,再通过最后一个表将结果序列化到文件系统。这一实现有助于在 reduce 端减少内存的使用量。实践中,应该把最大的那个表写在最后(否则会因为缓存浪费大量内存)。例如:
SELECT a.val, b.val, c.val FROM a JOIN b ON (a.key = b.key1) JOIN c ON (c.key = b.key1)
所有表都使用同一个 join key(使用 1 次 map/reduce 任务计算)。Reduce 端会缓存 a 表和 b 表的记录,然后每次取得一个 c 表的记录就计算一次 join 结果,类似的还有:
SELECT a.val, b.val, c.val FROM a JOIN b ON (a.key = b.key1) JOIN c ON (c.key = b.key2)
这里用了 2 次 map/reduce 任务。第一次缓存 a 表,用 b 表序列化;第二次缓存第一次 map/reduce 任务的结果,然后用 c 表序列化。
4)Left,Right和Full outer关键字用于处理join中空记录的情况
例如:
SELECT a.val, b.val FROM a LEFT OUTER JOIN b ON (a.key=b.key)
对应所有 a 表中的记录都有一条记录输出。输出的结果应该是 a.val, b.val,当 a.key=b.key 时,而当 b.key 中找不到等值的 a.key 记录时也会输出: a.val, NULL,所以 a 表中的所有记录都被保留了;
“a RIGHT OUTER JOIN b”会保留所有 b 表的记录。
Join 发生在 WHERE 子句之前。如果你想限制 join 的输出,应该在 WHERE 子句中写过滤条件——或是在 join 子句中写。这里面一个容易混淆的问题是表分区的情况:
SELECT a.val, b.val FROM a LEFT OUTER JOIN b ON (a.key=b.key) WHERE a.ds='2009-07-07' AND b.ds='2009-07-07'
会 join a 表到 b 表(OUTER JOIN),列出 a.val 和 b.val 的记录。WHERE 从句中可以使用其他列作为过滤条件。但是,如前所述,如果 b 表中找不到对应 a 表的记录,b 表的所有列都会列出 NULL,包括 ds 列。也就是说,join 会过滤 b 表中不能找到匹配 a 表 join key 的所有记录。这样的话,LEFT OUTER 就使得查询结果与 WHERE 子句无关了。解决的办法是在 OUTER JOIN 时使用以下语法:
SELECT a.val, b.val FROM a LEFT OUTER JOIN b ON (a.key=b.key AND b.ds='2009-07-07' AND a.ds='2009-07-07')
这一查询的结果是预先在 join 阶段过滤过的,所以不会存在上述问题。这一逻辑也可以应用于 RIGHT 和 FULL 类型的 join 中。
Join 是不能交换位置的。无论是 LEFT 还是 RIGHT join,都是左连接的。
SELECT a.val1, a.val2, b.val, c.val FROM a JOIN b ON (a.key = b.key) LEFT OUTER JOIN c ON (a.key = c.key)
先 join a 表到 b 表,丢弃掉所有 join key 中不匹配的记录,然后用这一中间结果和 c 表做 join。这一表述有一个不太明显的问题,就是当一个 key 在 a 表和 c 表都存在,但是 b 表中不存在的时候:整个记录在第一次 join,即 a JOIN b 的时候都被丢掉了(包括a.val1,a.val2和a.key),然后我们再和 c 表 join 的时候,如果 c.key 与 a.key 或 b.key 相等,就会得到这样的结果:NULL, NULL, NULL, c.val。