普利姆算法

普里姆算法是一种构造最小生成树的方法,从一个顶点开始,逐步选择最小权值的边将顶点加入集合,直至连接所有顶点。在实现过程中,通过辅助数组closest和lowcost记录距离和最小权值,并使用邻接表存储结构。通过不断更新这些信息,找到下一个权值最小的边,最终构建最小生成树。
摘要由CSDN通过智能技术生成
普里姆算法的基本思想:普里姆算法是一种构造最小生成树的算法,它是按逐个将顶点连通的方式来构造最小生成树的。
从连通网络N = { V, E }中的某一顶点u0出发,选择与它关联的具有最小权值的边(u0, v),将其顶点加入到生成树的顶点集合U中。以后每一步从一个顶点在U中,而另一个顶点不在U中的各条边中选择权值最小的边(u, v),把该边加入到生成树的边集TE中,把它的顶点加入到集合U中。如此重复执行,直到网络中的所有顶点都加入到生成树顶点集合U中为止。
假设G=(V,E)是一个具有n个顶点的带权无向连通图,T(U,TE)是G的最小生成树,其中U是T的顶点集,TE是T的边集,则构造G的最小生成树T的步骤如下:
(1)初始状态,TE为空,U={v0},v0∈V;
(2)在所有u∈U,v∈V-U的边(u,v)∈E中找一条代价最小的边(u′,v′)并入TE,同时将v′并入U;
重复执行步骤(2)n-1次,直到U=V为止。
在普里姆算法中,为了便于在集合U和(V-U)之间选取权值最小的边,需要设置两个辅助数组closest和lowcost,分别用于存放顶点的序号和边的权值。
  对于每一个顶点v∈V-U,closest[v]为U中距离v最近的一个邻接点࿰
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值