目录
1.概念介绍
素数也称质数,指在大于1的自然数中,除了1和该数自身外,无法被其他自然数整除的数。
ag:13 17 为质数。 16 有因数2和8,所以不是质数。
2.代码求解思路
2.1 思路一
由定义可以知道,如果一个数X不是质数,那么2~(X-1)必定有一个数可以整除X。这就是质数和合数的判断方法。
那么可以写出这样的一串代码。
#include <stdio.h>
int main()
{
//创建count来计算有多少个质数
int count = 0;
//设定i的范围是100~200
int i = 0;
for (i = 100; i < 201; i++)
{
//用j==(1~i-1)来试除
int j = 2;
for (j = 2; j < i; j++)
{
//如果出现一个j能整除i,则该数不是质数,跳出试除
if (i % j == 0)
break;
//如果j到最后都没能整除i,则该数为质数
if ((j == i - 1) && (i % j != 0))
{
count++;
printf("%d ", i);
}
}
}
printf("\n count = %d", count);
return 0;
}
这串代码可以完美完成任务,但是效率真的十分低下!!!
2.2 思路二:
我们知道16是合数 (2*8 4*4)。 21是合数 (3*7),假设一个数为X,那么2~之间如果没有一个数能将X整除,那么这个数就是质数。
有了这个思路,我们就能改良一下我们的代码
#include <stdio.h>
#include <math.h>
int main()
{
//创建count来计算有多少个质数
int count = 0;
//设定i的范围是100~200
int i = 0;
for (i = 100; i < 201; i++)
{
//用j==(1~i-1)来试除
int j = 2;
for (j = 2; j < sqrt(i); j++)
{
//如果出现一个j能整除i,则该数不是质数,跳出试除
if (i % j == 0)
break;
//如果j到最后都没能整除i,则该数为质数
if ((j == i - 1) && (i % j != 0))
{
count++;
printf("%d ", i);
}
}
}
printf("\n count = %d", count);
return 0;
}
2.3 优化
我们知道质数肯定不是偶数,那么 i 一定为奇数,在循环中把i++改成 i+=2,会大量减少判断的次数,从而加快判断的速度,提高代码的效率。
而且也可以有一个标识意识,让代码更简洁。引入一个变量flag来简化代码。同样也可以减少一半以上的判断量!!
最终效果如下
int main()
{
//创建count来计算有多少个质数
int count = 0;
//设定i的范围是100~200
int i = 0;
//i只判断奇数
for (i = 101; i < 201; i += 2)
{
//用j==(1~i-1)来试除
int j = 2;
//flag用来作为标识
int flag = 1;
for (j = 2; j <= sqrt(i); j++)
{
//flag用来作为标识
flag = 1;
//如果出现一个j能整除i,则该数不是质数,跳出试除
if (i % j == 0)
{
flag = 0;
break;
}
}
if (flag == 1)
{
count++;
printf("%d ", i);
}
}
printf("\n count = %d", count);
return 0;
}
3.结语
本次总结的方法比较基础,但是思想是精髓。本次的练习讲解就到这里,欢迎大家提出更好的方法,关注我,一起进步吧!