// 进入anoconda查看环境
conda env list
所有依赖最好的黑框框中安装
// 创建环境变量并且命名,选择python版本
conda create -n image_py36 python=3.6
conda create -n Transformer_py39 python=3.9
conda create -n T-SciQ_py38 python=3.8
conda create -n QINLP_py39 python=3.9
conda create -n Handpose_py369 python=3.6.9
conda create -n Hand_py38 python=3.8
// 激活环境
activate SmallPage2_py36
activate BERTopic_Env
activate Transformer_py39
activate QINLP_py39
activate Handpose_py369
activate Hand_py38 python=3…8
// 进入虚拟环境后安装相关的包
pip install numpy
// 环境变量配置错误无法使用,看是装在已经激活环境目录下还是项目目录下
// 安装pytorch
conda install pytorch torchvision torchaudio pytorch-cuda=11.6 -c pytorch -c nvidia
pip install xxxxxxxxxxxxxxx.whl
// 镜像安装
pip install -r requirements.txt
pip install 名字 -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install lambeq -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install 包名 -i http://pypi.douban.com/simple/ --trusted-host pypi.douban.com
// CUDA可安装在anaconda虚拟环境中
// 安装cudatoolkit
conda install cudatoolkit=11.3 -c https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
// 安装cudnn
conda install cudnn=8.2.1 -c https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
// 安装cudatoolkit-dev
conda install cudatoolkit-dev=11.3 -c conda-forge
// 安装cuda
pip install torch1.11.0+cu113 torchvision0.12.0+cu113 torchaudio==0.11.0 --extra-index-url https://download.pytorch.org/whl/cu113