Rotate Image

本文介绍了一种原地旋转二维矩阵的算法实现,通过分情况讨论的方式详细展示了如何将一个 n x n 的二维矩阵顺时针旋转90度。该算法仅使用一个额外变量进行中间存储,适用于所有 n x n 矩阵,无论 n 是奇数还是偶数。
摘要由CSDN通过智能技术生成

You are given an n x n 2D matrix representing an image.

Rotate the image by 90 degrees (clockwise).

Follow up:

Could you do this in-place?


本题为原地算法,只需要一个额外的变量作为存储转移矩阵时的临时空间,分就两种情况,代码如下:

class Solution {
public:
    void rotate(vector<vector<int> > &matrix) {
        int temp,n=matrix.size();
	if(n%2==0)
	{
		for(int i=0;i<n/2;i++)
		{
			for(int j=0;j<n/2;j++)
			{
				temp=matrix[i][j];
				matrix[i][j]=matrix[n-1-j][i];
				matrix[n-1-j][i]=matrix[n-1-i][n-1-j];
				matrix[n-1-i][n-1-j]=matrix[j][n-1-i];
				matrix[j][n-1-i]=temp;
			}
		}
	}
	else
	{
		for(int i=0;i<n/2;i++)
		{
			for(int j=0;j<n/2;j++)
			{
				temp=matrix[i][j];
				matrix[i][j]=matrix[n-1-j][i];
				matrix[n-1-j][i]=matrix[n-1-i][n-1-j];
				matrix[n-1-i][n-1-j]=matrix[j][n-1-i];
				matrix[j][n-1-i]=temp;
			}
		}
		for(int k=0;k<(n+2)/2;k++)
		{
			temp=matrix[n/2][k];
			matrix[n/2][k]=matrix[n-1-k][n/2];
			matrix[n-1-k][n/2]=matrix[n/2][n-1-k];
			matrix[n/2][n-1-k]=matrix[k][n/2];
			matrix[k][n/2]=temp;
		}
	}
        
    }
};


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值