第五章树和二叉树

树的基本概念

结点的度:结点所拥有的子树的个数。
树的度:树中各结点度的最大值。
叶子结点:度为0的结点,也称为终端结点。
分支结点:度不为0的结点,也称为非终端结点。
结点所在层数:根结点的层数为1;对其余任何结点,若某结点在第k层,则其孩子结点在第k+1层。
树的深度:树中所有结点的最大层数,也称高度。
层序编号:将树中结点按照从上层到下层、同层从左到右的次序依次给他们编以从1开始的连续自然数。
有序树、无序树:如果一棵树中结点的各子树从左到右是有次序的,称这棵树为有序树;反之,称为无序树。
森林:m (m≥0)棵互不相交的树的集合。
同构:对两棵树,若通过对结点适当地重命名,就可以使这两棵树完全相等(结点对应相等,结点对应关系也相等),则称这两棵树同构。

树的遍历

前序遍历:若树为空,不进行遍历;否则⑴ 访问根结点;⑵ 按照从左到右的顺序前序遍历根结点的每一棵子树。
后序遍历:若树为空,则遍历结束;否则⑴ 按照从左到右的顺序后序遍历根结点的每一棵子树;⑵ 访问根结点。
层序遍历:从树的第一层(即根结点)开始,自上而下逐层遍历,在同一层中,按从左到右的顺序对结点逐个访问。

树的存储结构

存储结构的关键:如何表示结点的双亲和孩子

双亲表示法

基本思想:用一维数组来存储树的各个结点(一般按层序存储),数组中的一个元素对应树中的一个结点,每个结点记录两类信息:结点的数据信息以及该结点的双亲在数组中的下标。

data:存储树中结点的数据信息
parent:存储该结点的双亲在数组中的下标

实现

template <class T>
struct PNode{
     T data;          //数据域
     int parent;   //指针域,双亲在数组中的下标
} ;

孩子表示法(多重链表表示法)

基本思想:链表中的每个结点包括一个数据域和多个指针域,每个指针域指向该结点的一个孩子结点。

指针域的个数等于树的度。
data:数据域,存放该结点的数据信息;
child1~childd:指针域,指向该结点的孩子。
缺点:浪费空间
指针域的个数等于该结点的度。
data:数据域,存放该结点的数据信息;
degree:度域,存放该结点的度;
child1~childd:指针域,指向该结点的孩子。
缺点:结点结构不一致

孩子结点:

struct CTNode
{   
     int child;
     CTNode *next;
};

表头结点:

template <class T>
struct CBNode
{     
    T data;
    CTNode *firstchild;  
};

孩子兄弟表示法

因为某结点的第一个孩子和右兄弟右兄弟是唯一的,可以设置两个分别指向该结点的第一个孩子和右兄弟的指针 。

data:数据域,存储该结点的数据信息;
firstchild:指针域,指向该结点第一个孩子;
rightsib:指针域,指向该结点的右兄弟结点。

template   <class T>
struct TNode{
     T data;
     TNode <T> *firstchild, *rightsib;
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值