一直没有很在意过sklearn的class_weight的这个参数的具体作用细节,只大致了解是是用于处理样本不均衡。后来在简书上阅读svm松弛变量的一些推导的时候,看到样本不均衡的带来的问题时候,想更深层次的看一下class_weight的具体作用方式,
svm松弛变量的简书链接:https://www.jianshu.com/p/8a499171baa9
该文中的样本不均衡的描述:
“样本偏斜是指数据集中正负类样本数量不均,比如正类样本有10000个,负类样本只有100个,这就可能使得超平面被“推向”负类(因为负类数量少,分布得不够广),影响结果的准确性。”
随后翻开sklearn LR的源码:
我们以分类作为说明重点
在输入参数class_weight=‘balanced’的时候:
# compute the class weights for the entire dataset y
if class_weight == "balanced":
class_weight = compute_class_weight(class_weight,
np.arange(len(self.classes_)),
y)
class_weight = dict(enumerate(class_weigh