寒假集训数论专题

第1题:

根据整数模 的性质处理输入(先乘10再模和先模再乘得到的数同余),(bx,a)的关系可写成(bx,1)和(a,a);代码如下:

#include <iostream>
using namespace std;
#define MOD 19260817
inline int input();
long long quickPow(int x, int y);
int main() {
	long long a, b;
	a = input();
	b = input();
	if (b) {
		printf("%lld\n", (a * quickPow(b, MOD - 2)) % MOD);
	}
	else {
		puts("Angry!");
	}
	return 0;
}
inline int input() {
	char ch;
	int num = 0;
	ch = getchar();
	while (!isdigit(ch)) {
		ch = getchar();
	}
	while (isdigit(ch) ){
		num = (num << 3) + (num << 1) + ch - '0';
		num %= MOD;
		ch = getchar();
	}
	return num;
}
long long quickPow(int x, int y) {
	long long  num =1;
	long long ab = x%MOD;
	while (y > 0) {
		if (y & 1) {
			num = (num * ab) % MOD;
		}
		ab = (ab * ab) % MOD;
		y >>= 1;
	}
	return num;
}

第2题:

 

相邻数互质,相邻够小了,再大点就会把它包含掉,所以不用考虑比它大的区间,有特殊情况1和1,代码如下: 

#include <iostream>
using namespace std;
int main() {
	int t;
	scanf("%d", &t);
	for (int i = 0; i < t; i++) {
		int l, r;
		scanf("%d%d", &l, &r);
		if (l == 1) {
			if (r == 1)printf("1\n");
			else {
				printf("%d\n", r - l);
			}
		}
		else {
			printf("%d\n", r - l);
		}
	}
	return 0;
}

 第3题:

 

r可能非常大,直接筛会爆,考虑到合数能分解成两个非1非本身的数,故筛sqrt(r) ,具体代码如下:

#include <iostream>
#include<cmath>
#include<vector>
using namespace std;
vector<int>prime;
vector<int>sign;
void getprime(int r);
int getnum(int l, int r);
int main() {
	int l, r;
	scanf("%d%d", &l, &r);
	if (l == 1)l = 2;
	getprime(sqrt(r));
	printf("%d", getnum(l, r));
	return 0;
}
void getprime(int r) {
	sign.assign(r + 1, false);
	for (int i = 2; i <= r; i++) {
		if (!sign[i]) { 
			prime.push_back(i);
		}
		for (int p : prime) {
			if (p * i > r)break;
			sign[p * i] = true;
			if (i % p == 0)break;
		}
	}
}
int getnum(int l, int r) {
	int num = 0;
	for (int i = l; i <= r; i++) {
		int k = 0;
		int kk = sqrt(i);
		for (int p : prime) {
			if (p > kk)break;
			if (i % p == 0) {
				k = 1;
				break;
			}
		}
		if (!k)num++;
	}
	return num;
}

第4题: 

 

就是看最大公约数和最小公约数分解的素数种类及对应个数,然后讨论就可以了,代码如下: 

#include <iostream>
#include<cmath>
#include<vector>
using namespace std;
vector<int>prime;
vector<int>sign;
void getprime(int r);
int main() {
	int l, r;
	int sum = 1;
	scanf("%d%d", &l, &r);
	if (l == r) {
		printf("%d", 1);
		return 0;
	}
	if (l == 1) {
		printf("2");
		return 0;
	}
	getprime(r);
	for (int p : prime) {
		if (r % p == 0) {
			int num = 0;
			while (r % p == 0) {
				num++;
				r /= p;
			}
			while (l % p == 0) {
				num--;
				l /= p;
			}
			if (num < 0) {
				printf("0");
				return 0;
			}
			sum*=(num==0?1:2);
		}
		if (l % p == 0) {
			printf("0");
			return 0;
		}
	}
	printf("%d",sum);
	return 0;
}
void getprime(int r) {
	sign.assign(r + 1, false);
	for (int i = 2; i <= r; i++) {
		if (!sign[i]) { 
			prime.push_back(i);
		}
		for (int p : prime) {
			if (p * i > r)break;
			sign[p * i] = true;
			if (i % p == 0)break;
		}
	}
}

第5题:

 

这个直接把所有可能的lcm给统计出来 ,然后找到最大的lcm,这里要注意的是,在求每一个lcm时,不必去一定要最小公倍,只要是公倍就行,即弱化条件,因为在后续找最大lcm的过程中,不会选到不是最小公倍的。具体代码如下:

#include <iostream>
using namespace std;
int arr[1000000][2];
int f[1000001] = {0};
int g[1000001] = { 0 };
int main() {
	int n, m;
	scanf("%d%d", &n, &m);
	int a;
	int k = 0;
	for (int i = 0; i < n; i++) {
		scanf("%d", &a);
		if (a <= m) {
			arr[k][0] = a;
			arr[k][1] = i + 1;
			g[a]++;
			k++;
		}
	}
	if (k == 0) {
		printf("1 0\n");
		return 0;
	}
	for (int i = 0; i < k; i++) {
		if (g[arr[i][0]]) {
			int sa = m / arr[i][0];
			for (int j = 1; j <= sa; j++) {
				f[arr[i][0] * j]+=g[arr[i][0]];
			}
			g[arr[i][0]] = 0;
		}
	}
	int max = 0;
	int lcm = 0;
	for (int i = 1; i <= m; i++) {
		if (max < f[i]) {
			max = f[i];
			lcm = i;
		}
	}
	cout << lcm << ' ' << max<<endl;
	for (int i = 0; i < k; i++) {
		if (lcm % arr[i][0] == 0) {
			printf("%d ", arr[i][1]);
		}
	}
	return 0;
}

第6题: 

 

 

 数论问题,质数是一个关键,质数可以由其他数转化过来吗?思考一下,是不可以的,所以如果数组里有质数,如果所求值存在,必为该质数,所以不能有两个质数。而且,2能够转换成任意合数。所以只剩只有一个质数的情况了,分奇偶讨论并用类似证明2可以转化成任意合数的方法来证就可以了。具体代码如下:

#include <iostream>
#include <vector>
using namespace std;
#define N 400005
int factor[N + 1];
void isPrime() {
    vector<int> sg(N + 1, 0), prime;
    for (int i = 2; i <= N; i++) {
        if (!sg[i]) {
            prime.push_back(i);
            factor[i] = i;
        }
        for (int j = 0; prime[j] <= N / i; j++) {
            sg[prime[j] * i] = true;
            factor[prime[j] * i] = prime[j];
            if (i % prime[j] == 0)  break;
        }
    }
}
int main() {
    isPrime();
    int t;
    cin >> t;
    for(int hh=0;hh<t;hh++){
        int n;
        cin >> n;
        vector<int> a(n);
        for (int i = 0; i < n; i++) {
            cin >> a[i];
        }
        int ans = 0;
        for (int x : a) {
            if (factor[x] == x) {
                if (ans) {
                    ans = -1;
                    break;
                }
                else ans = x;
            }
        }
        if (ans == -1) {
            cout << ans << endl;
        }
        else if (!ans||ans==2) {
            cout << '2' << endl;
        }
        else {
            int ko = 0;
            for (int kk : a) {
                if (kk == ans)continue;
                if (kk % 2 == 0 && kk < 2 * ans)ko = 1;
                if (kk % 2 == 1 && kk - factor[kk] < 2 * ans)ko = 1;
                if (ko)break;
            }
            if (ko)ans = -1;
            cout << ans << endl;
        }
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值