arcgis中shp文件的字符串string型字段转换为float单精度格式。如分辨率字符串字段“0.500”转为0.5

这篇博客指导如何在ArcGIS中使用Python将字符串类型的'分辨率'字段转换为单精度浮点数,如将'0.500'转换为0.5。适合属性计算中的Python脚本应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

arcgis中shp文件的字符串string型字段转换为float单精度格式。如分辨率字符串字段为“0.500”转为0.5
在属性计算里选择python模式,而非vb模式,输入代码即可。

float(!分辨率!)
<think>好的,我需要帮助用户处理一个TIF格式的降水数据文件,数据类是int16,空间分辨率约1km,覆盖中国全境,2020年1月的降水量,单位是0.1mm。用户想用Matlab或ArcGIS Pro进行可视化,生成彩色图。首先,我得理清处理步骤。 首先,数据读取。TIF文件在Matlab中可以用imread或者geotiffread,但考虑到地理信息,geotiffread可能更合适,因为它能读取地理坐标信息。而ArcGIS Pro直接拖入即可,但用户可能需要知道如何调整符号系统和单位转换。 然后是数据类的处理。int16类的数据可能需要转换,尤其是单位是0.1mm,所以在计算实际降水量时,要乘以0.1。但要注意是否有无效值或填充值,可能需要用NaN替换这些值,比如常见的-32768。Matlab中处理的话,可能需要使用单引号将int16转为double,再处理无效值。 接下来是可视化。Matlab中使用imagesc可能不够,因为地理坐标需要投影信息。使用Mapping Toolbox的mapshow或geoshow会更准确,尤其是结合经纬度数据。而ArcGIS Pro则更直观,加载后调整符号系统,选择合适的色带,比如降水量常用的蓝色渐变,并设置分类间隔。 另外,彩图需要注意颜色映射的选择,避免使用不连续的色带,可能用parula或者自定义的渐变色。在Matlab中,可以设置colormap,colorbar,并添加标题和坐标轴标签。在ArcGIS Pro中,通过符号系统里的色带选项调整,并添加图例。 还需要考虑空间范围是否正确,是否覆盖整个中国,可能需要裁剪数据,但用户提到文件已经是全中国的,所以可能不需要。但检查数据范围是否匹配中国的经纬度,东经约73°到135°,北纬约18°到54°左右。 最后,导出图像,确保单位标注正确,比如降水量(mm),并注明月份和年份。可能需要添加省份边界或主要河流作为参考,Matlab中可以用shaperead加载边界数据,ArcGIS Pro中直接添加底图或矢量层。 总结步骤:读取数据,处理数据类和单位,替换无效值,地理坐标处理,可视化设置,添加辅助元素,输出图像。需要分Matlab和ArcGIS Pro两种方法说明,确保用户能根据自身软件选择步骤。同时注意中文解答,结构清晰,逐步指导。</think>以下是在MATLAB和ArcGIS Pro中处理该降水数据的详细步骤指南,分为两个方案供选择: $\boxed{\text{方案一:MATLAB实现}}$ 1. **数据读取与解析** ```matlab % 读取地理信息数据 [pre, R] = readgeoraster('precipitation.tif'); pre = double(pre); % 转换双精度浮点 % 处理单位转换和无效值 pre(pre == -32768) = NaN; % 替换常见填充值为NaN pre = pre * 0.1; % 转换为mm单位(原始单位是0.1mm) % 获取经纬度范围 latlim = R.LatitudeLimits; lonlim = R.LongitudeLimits; ``` 2. **地理坐标构建** ```matlab % 创建地理参考坐标网格 [rows, cols] = size(pre); lon = linspace(lonlim(1), lonlim(2), cols); lat = linspace(latlim(1), latlim(2), rows); [LON, LAT] = meshgrid(lon, lat); ``` 3. **高级可视化** ```matlab figure('Position', [100 100 800 600]) ax = axesm('mercator', 'MapLatLimit', [15 55], 'MapLonLimit', [70 136]); geoshow(LAT, LON, pre, 'DisplayType', 'texturemap') colormap(jet(256)) % 使用jet色带或parula c = colorbar; c.Label.String = 'Precipitation (mm)'; title('2020年1月中国降水量分布') % 添加地理要素增强可读性 coast = shaperead('china.shp', 'UseGeoCoords', true); geoshow(coast, 'Color', 'k') setm(ax, 'ParallelLabel', 'on', 'MeridianLabel', 'on') ``` $\boxed{\text{方案二:ArcGIS Pro实现}}$ 1. **数据加载与预处理** - 将TIF文件拖入地图视图 - 右键图层 → 属性 → 符号系统: * 渲染类:拉伸 * 色带选择"降水量"专用色带(如Blue-Green-Yellow) * 设置直方图统计范围(建议使用2.5%-97.5%消除异常值) 2. **单位校正与标注** ```python # 使用字段计算器(可选) arcpy.management.CalculateField( in_table="precipitation", field="pre_mm", expression="!pre! * 0.1", expression_type="PYTHON3" ) ``` 3. **专业制图优化** - 布局视图添加地图元素: * 比例尺(公里和经纬度双标注) * 指北针(使用国标样式) * 自定义图例(标注极值:最大降水区/干旱区) - 空间参考设置: * 坐标系建议使用WGS_1984_UTM_Zone_49N(根据实际位置调整) $\boxed{\text{关键技术要点}}$ 1. **数据验证**: - 检查空间范围:中国陆地范围应覆盖东经73°-135°,北纬18°-54° - 验证最大值合理性:1月降水超过500mm需核查 2. **渲染优化**: - 建议使用非线性色带分段: * 0-10mm:浅蓝渐变(弱降水) * 10-50mm:蓝-绿色过渡(中等降水) * >50mm:黄色-红色(强降水) 3. **元数据记录**: ```matlab % MATLAB元数据检查示例 disp(['空间分辨率: ', num2str(1/R.CellsPerDegree), '度/像素']) disp(['有效数据范围: ', num2str(min(pre(:)),'%.1f'), ' ~ ',... num2str(max(pre(:)),'%.1f'), ' mm']) ``` $\boxed{\text{结果验证方法}}$ 1.区域校验: - 华南地区1月平均降水约30-80mm - 西北干旱区应接近0mm 2. 使用站点数据交叉验证(如有) 3. 检查青藏高原地区是否出现异常高值(可能为雪水当量需特殊处理) 两种方案均可生成专业级可视化结果,MATLAB方案适合自动化批量处理,ArcGIS Pro方案更适合交互式制图。建议处理完成后导出为GeoTIFF+TFW文件组合,便于后续分析使用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

木易GIS

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值