题目:输入一棵二叉树和一个整数,打印出二叉树中结点值的和为输入整数的所有路径。从树的根结点开始往下一直到叶结点所经过的结点形成一条路径。
这里需要明确一个概念:路径就是从根节点出发到叶子结点。一定是到叶子结点结束,而不是中间的某个结点。
这就要求我们需要从根节点开始遍历,前中后三种遍历中也只有前序遍历是首先访问根节点。
因为这里的访问存在回溯的问题,因为我们需要遍历完所有的路径,这里就需要我们保存以访问的结点信息。然后在回溯的时候我们就能明确的知道此事处于何地,进退有序。
分析如下:
这里需要明确一个概念:路径就是从根节点出发到叶子结点。一定是到叶子结点结束,而不是中间的某个结点。
这就要求我们需要从根节点开始遍历,前中后三种遍历中也只有前序遍历是首先访问根节点。
因为这里的访问存在回溯的问题,因为我们需要遍历完所有的路径,这里就需要我们保存以访问的结点信息。然后在回溯的时候我们就能明确的知道此事处于何地,进退有序。
遍历的过程如下图所示:
#include <iostream>
#include <vector>
using namespace std;
struct BinartyTree
{
int data;
BinartyTree *pLeft;
BinartyTree *pRight;
};
BinartyTree *pRoot1=NULL;
int arr[5]={8,4,10,3,6};
vector <int> path;
void Loop(BinartyTree **root,int data);
void CreateTree(BinartyTree**root,int *array,int lenght);
void FindPath(BinartyTree *tree,int expectionSum);
void FindPathhelp(BinartyTree *tree,int expectedSum,vector<int> &paths,int currentSum);
void CreateTree(BinartyTree**root,int *array,int lenght)
{
for(int i=0;i<lenght;i++)
Loop(root,array[i]);
}
void Loop(BinartyTree **root,int data)
{
BinartyTree *pNode=new BinartyTree;
pNode->data=data;
pNode->pLeft=pNode->pRight=NULL;
if(NULL==*root)
*root=pNode;
else
{
BinartyTree *back=NULL;
BinartyTree *current=*root;
while(current)
{
back=current;
if(current->data>data)
current=current->pLeft;
else
current=current->pRight;
}
if(data > back->data)
back->pRight=pNode;
else
back->pLeft=pNode;
}
}
void PreOrder(BinartyTree *tree)
{
BinartyTree *temp=tree;
if(temp)
{
cout<<temp->data<<" ";
PreOrder(temp->pLeft);
PreOrder(tree->pRight);
}
}
void FindPathhelp(BinartyTree *tree,int expectedSum,vector<int> &paths,int currentSum)
{
currentSum+=tree->data;
paths.push_back(tree->data);
bool isleaf=NULL==tree->pLeft && NULL ==tree->pRight;
if(currentSum==expectedSum && isleaf) //如果找到,则打印出路径结果;
{
cout<<"The path is found:"<<endl;
vector<int>::iterator iter;
for(iter=path.begin();iter!=path.end();iter++)
cout<<*iter<<" ";
cout<<endl;
}
//如果不是叶子结点,则遍历它的子结点;
if(tree->pLeft !=NULL)
FindPathhelp(tree->pLeft,expectedSum,paths,currentSum);
if(tree->pRight !=NULL)
FindPathhelp(tree->pRight,expectedSum,paths,currentSum);
//返回到父结点之前,在路径上删除当前的结点;
paths.pop_back();
}
void FindPath(BinartyTree *tree,int expectionSum)
{
if(NULL==tree)
return;
int currentSum=0;
FindPathhelp(tree,expectionSum,path,currentSum);
}
int main()
{
CreateTree(&pRoot1,arr,5);
FindPath(pRoot1,18);
system("pause");
return 0;
}
运行结果:
小结:当我们遇到一个问题无从下手的时候,我们可以举一个实际简单的例子,这样可以很快的帮我们理清思路,找到规律,然后再将其推向一般化。当我们遇到复杂的问题的时候,我们可以采取“各个击破”的军事思想,这种思想的精髓是当敌我悬殊时,我们可以把强大的敌人分割开来,然后集中优势兵力打被分隔开的小股力量,各个击破。那么我们在解决问题的时候,我们就可以把问题化简为单个的小问题,然后逐个解决小问题,这种“分治法”可能会使问题容易很多。