《剑指offer》:[23]从上往下打印二叉树

题目:从上往下打印二叉树
此题实质是考察树的遍历算法,只是这种遍历不是我们熟悉的前、中、后序遍历,而是我们的层次遍历。其实也很简单。分析如下:





   按层打印毫无疑问,我们需要从根节点开始,然后依次打印其子节点,为了能保证能打印其子节点,我们应该先保存其两个子节点。如上图先打印根结点8,然后保存其
左右结点4,12;然后再打印4,接着将3,6结点依次放入容器中;接着结点12,依次往下...很明显这是一个队列结构。所以我们可以借助一个队列来完成。
其实现代码如下:
#include <iostream>
#include <deque>
#include <queue>
using namespace std;
struct BinaryTree
{
	int data;
	BinaryTree *pLeft;
	BinaryTree *pRight;
};
BinaryTree *pRoot1=NULL;
deque<BinaryTree*> d1;
int arr[7]={8,4,12,3,6,10,14};
void InsertTree(BinaryTree *root,int data);
void CreateTree(BinaryTree **root,int *array,int length);
void PrintFronTopToBottom(BinaryTree *root);
void InsertTree(BinaryTree *root,int data)
{
	if(root->data > data)
	{
		if(NULL==root->pLeft)
		{
			BinaryTree *pNode=new BinaryTree;
			pNode->data=data;
			pNode->pLeft=pNode->pRight=NULL;
			root->pLeft=pNode;
		}
		else
			InsertTree(root->pLeft,data);
	}
	else
	{
		if(NULL==root->pRight)
		{
			BinaryTree *pNode=new BinaryTree;
			pNode->data=data;
			pNode->pLeft=pNode->pRight=NULL;
			root->pRight=pNode;
		}
		else
		{
			InsertTree(root->pRight,data);
		}
	}
}
void CreateTree(BinaryTree **root,int *array,int length)
{
	for(int i=0;i<length;i++)
	{
		if(NULL==*root)
		{
			BinaryTree *pNode=new BinaryTree;
			pNode->data=arr[i];
			pNode->pLeft=pNode->pRight=NULL;
			*root=pNode;
		}
		else
			InsertTree(*root,arr[i]);
	}
}
void PrintFronTopToBottom(BinaryTree *root)
{
	if(!root)
		return;
	BinaryTree *temp=root;
	d1.push_back(root);
	while(d1.size())
	{
		temp=d1.front();
		d1.pop_front();
		cout<<temp->data<<" ";
		if(temp->pLeft)
			d1.push_back(temp->pLeft);
		if(temp->pRight)
			d1.push_back(temp->pRight);
	}
}
int main()
{
	CreateTree(&pRoot1,arr,7);
	PrintFronTopToBottom(pRoot1);
	//PreOrder(pRoot1);
	cout<<endl;
	system("pause");
	return 0;
}

运行结果:


   小结:不管是树的层次遍历,还是广度优先遍历一个图或者是树,都要用到队列,第一步将起始结点放入队列中,然后每一次从队列的头部取出一个结点,遍历这个结点之后把它能到达的结点都依次放入队列。重复这个过程,知道队列里的结点全部遍历完为止。
/* 这是一个在字符环境中,用ASCII码打印二叉树形状的算法。 在Linux控制台下写的例题,在DOS中稍有点乱。 采用层次遍法。 算法拙劣,仅供初学者做练习,(本人也是初学者,自学数据结构,刚好学到这二叉树这一章, 半路出家,基础差有点吃力头大,搞几个二叉的例题,却不知道其构造形状, 想调用图形API做个美观点的,却有点偏离本章的学习目的,只好用字符打印, linux环境中打印的还可以,DOS中有点不稳定,如果您有更好的算法一定不吝赐教。 我的QQ:137241638 mail:hnflcp@139.com */ #include <stdio.h> #include <stdlib.h> #define MaxSize 100 //Pstart是二叉树根结点在一行中的位置,一行最能打印124个字符,取其1/2。 //如果你的屏不够宽的话,可以输出文本文件里, aa.exe>>aa.txt #define Pstart 40 typedef struct bstnode { int key, data, bf; struct bstnode *lchild, *rchild; }BSTNode; typedef struct pnode //为打印二叉树建了一个结构。 { int key; //关键字数据1 int data; //关键字数据2 struct pnode *lchild, //左孩子 *rchlid, //右孩子 *parent; //父节点 int lrflag, //标记本节点是左孩子(等于0时),还是右孩子(等于1时) space, //存储本节点打印位置 level; //存储本节点所在层次。 }PBSTNode; /*建立二叉树。 用括号表示法表示二叉树字符串,创建二叉树。 */ BSTNode* CreateBSTNode(char *s) { char ch; BSTNode *p=NULL, *b=NULL, *ps[MaxSize]; int top=-1, tag=-1; ch=*s; while(ch) { switch(ch) { case '(':ps[++top]=p;tag=1;break; case ',':tag=2;break; case ')':top--;break; default: p=(BSTNode*)malloc(sizeof(BSTNode)); p->data=ch; p->lchild=p->rchild=NULL; if(b==NULL) b=p; else { switch(tag) { case 1:ps[top]->lchild=p;break; case 2:ps[top]->rchild=p;break; } } } ch=*(++s); } return b; } //用适号表示法打印二叉树。 void DispBSTNode(BSTNode *b) { if(b!=NULL) { printf("%d",b->key); if(b->lchild!=NULL||b->rchild!=NULL) { printf("("); DispBSTNode(b->lchild); if(b->rchild!=NULL)printf(","); DispBSTNode(b->rchild); printf(")"); } } } int BSTNodeHeight(BSTNode *b) { int lchildh,rchildh; if(b==NULL)return 0; else { lchildh=BSTNodeHeight(b->lchild); rchildh=BSTNodeHeight(b->rchild); return (lchildh>rchildh)?(lchildh+1):(rchildh+1); } } /*建立一个二叉树打印结点的信息, 只被int CreatePBSTNode(BSTNode *b,PBSTNode *pqu[])调用*/ void SetPBSTNodeInfo(BSTNode *b,PBSTNode *parent,PBSTNode *pb,int level,int lrflag) { int f=3; pb->data=b->data; pb->key =b->key; pb->parent=parent; pb->level=level; pb->lrflag=lrflag; pb->space=-1; } /*用层次遍历法,BSTNode结构存储的二叉树转换为,PBSTNode结构的二叉树*/ int CreatePBSTNode(BSTNode *b,PBSTNode *pqu[]) { BSTNode *p; BSTNode *qu[MaxSize]; int front=-1, rear=-1; rear++; qu[rear]=b; pqu[rear]=(PBSTNode*)malloc(sizeof(PBSTNode)); SetPBSTNodeInfo(b,NULL,pqu[rear],1,-1); while(rear!=front) { front++; p=qu[front]; if(p->lchild!=NULL) { rear++; qu[rear]=p->lchild; pqu[rear]=(PBSTNode*)malloc(sizeof(PBSTNode)); SetPBSTNodeInfo(p->lchild,pqu[front],pqu[rear],pqu[front]->level+1,0); } if(p->rchild!=NULL) { rear++; qu[rear]=p->rchild; pqu[rear]=(PBSTNode*)malloc(sizeof(PBSTNode)); SetPBSTNodeInfo(p->rchild,pqu[front],pqu[rear],pqu[front]->level+1,1); } } return rear; } //打印一层结点,及该层结点与父结点的连线路径。 void PBSTNodePrint_char(PBSTNode *pb[],int n,int h) { int l=-1, r=0, i,j,k, end; char c; PBSTNode *p; if(n<=0||h<=0) { return; } else if(pb[0]->level==1) { for(i=0;i<pb[0]->space;i++) printf(" "); printf("%c",pb[0]->data); printf("\n"); return; } h=h-pb[0]->level+2; for(k=0;k<h;k++) { j=0; l--; r++; for(i=0;i<n;i++)//打印线条 { p=pb[i]; end=(p->lrflag==0)?l:r; end+=p->parent->space; for(;j<end;j++) printf(" "); c=(p->lrflag==0)?'/':'\\'; printf("%c",c); } printf("\n"); } for(i=0;i<n;i++)//计算本层结点打印位置 { p=pb[i]; if(p->lrflag==0) p->space=p->parent->space+l; else p->space=p->parent->space+r; } for(i=0,j=0;i<n;i++)//打印关键字数据 { p=pb[i]; for(;j<p->space;j++) printf(" "); printf("%c",p->data); } printf("\n"); } //循环打印所有层的数据 void DispBTree(BSTNode *b) { int n,i,j,high, level; PBSTNode *p; PBSTNode *pqu[MaxSize]; PBSTNode *levelpqu[MaxSize]; n=CreatePBSTNode(b,pqu); high=BSTNodeHeight(b); j=0; level=1; pqu[0]->space=Pstart; for(i=0;i<=n;i++) { p=pqu[i]; if(p->level==level) { levelpqu[j]=p; j++; } else { PBSTNodePrint_char(levelpqu,j,high); level=p->level; j=0; levelpqu[j]=p; j++; } } PBSTNodePrint_char(levelpqu,j,high); } void main() { int iDepth=0, iWidth=0, iCount=0; char *str1="A(B(D,E(H,X(J,K(L,M(T,Y))))),C(F,G(X,I)))"; char *str2="A(B(D(,G)),C(E,F))"; BSTNode *b=CreateBSTNode(str1); DispBSTNode(b);printf("\n"); iDepth=BSTNodeHeight(b); printf("Depth:%d\n",iDepth); DispBTree(b); }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值