《剑指offer》:[39]求解二叉树的深度

题目:输入一棵二叉树的根结点,求该树的深度。从根结点到叶子结点一次经过的结点(含根、也结点)形成树的一条路径,最长路径的长度为树的深度。
例如下图中的二叉树,其深度根结点到叶子结点:1->2->5->7,该条路径的长度为4,所以该二叉树的深度为4 。
方案:递归方法。时间复杂度大于O(N)。
   在面试题25中,我们讨论了如何用容器来记录一个条路径及求路径的和的情况,但是该方法的代码量比较大,所以这节我们将采用更加简洁的代码来实现。我们可以从另外一个角度来理解树的深度。例如树只有一个根结点,那么它的深度为1.如果该树只有右子树没有左子树,该树的深度就是右子树的深度+1;反之左子树的深度+1;然后在用这种思路来讨论一其右子树为根结点的二叉树的深度。很显然,神递归的思路又出现了,没错,因为像树的数据结构,还有想求阶乘等一些题目,其实单步的计算不复杂,但是计算量多,冗长,因为每一步干的事儿都一样,所以我们就可以采取递归的思路。
递归的实现代码如下:
#include<iostream>
using namespace std;
int arr[7]={8,5,15,3,7,16,6};
struct  BinaryTree
{
	int data;
	BinaryTree *pLeft;
	BinaryTree *pRight;
};
BinaryTree *pRoot1=NULL;
void InsertTree(BinaryTree *root, int data)
{
	if(root->data>data)//插入左边
	{
		if(root->pLeft==NULL)
		{
			root->pLeft=new BinaryTree;
			root->pLeft->data=data;
			root->pLeft->pLeft=root->pLeft->pRight=NULL;
		}
		else
		{
			InsertTree(root->pLeft,data);// 继续查找插入位置;
		}
	}
	else
	{
		if(root->pRight==NULL)
		{
			root->pRight=new BinaryTree;
			root->pRight->data=data;
			root->pRight->pLeft=root->pRight->pRight=NULL;
		}
		else
			InsertTree(root->pRight,data);
	}
}
void CreateTree(BinaryTree **root,int *array,int length)
{
	for(int i=0;i<length;i++)
	{
		if(*root==NULL)
		{
			BinaryTree *temp=new BinaryTree;
			temp->data=array[i];
			temp->pLeft=temp->pRight=NULL;
			*root=temp;
		}
		else
			InsertTree(*root,array[i]);
	}
}


void PreOrder(BinaryTree *tree)
{
	if(NULL!=tree)
	{
		cout<<tree->data<<" ";
		PreOrder(tree->pLeft);
		PreOrder(tree->pRight);
	}
}
int TreeDepth(BinaryTree *root)
{
	if(NULL==root)
		return 0;
	int left=TreeDepth(root->pLeft);
	int right=TreeDepth(root->pRight);
	return (left>right)?(left+1):(right+1);
}
int main()
{
	int depth=0;
	CreateTree(&pRoot1,arr,7);
	cout<<"前序遍历:";
	PreOrder(pRoot1);
	cout<<endl;
	depth=TreeDepth(pRoot1);
	cout<<"树的深度为:"<<depth<<endl;

	system("pause");
	return 0;
}

运行结果是:


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值