题目:输入一棵二叉树的根结点,求该树的深度。从根结点到叶子结点一次经过的结点(含根、也结点)形成树的一条路径,最长路径的长度为树的深度。
方案:递归方法。时间复杂度大于O(N)。
在面试题25中,我们讨论了如何用容器来记录一个条路径及求路径的和的情况,但是该方法的代码量比较大,所以这节我们将采用更加简洁的代码来实现。我们可以从另外一个角度来理解树的深度。例如树只有一个根结点,那么它的深度为1.如果该树只有右子树没有左子树,该树的深度就是右子树的深度+1;反之左子树的深度+1;然后在用这种思路来讨论一其右子树为根结点的二叉树的深度。很显然,神递归的思路又出现了,没错,因为像树的数据结构,还有想求阶乘等一些题目,其实单步的计算不复杂,但是计算量多,冗长,因为每一步干的事儿都一样,所以我们就可以采取递归的思路。
递归的实现代码如下:
#include<iostream>
using namespace std;
int arr[7]={8,5,15,3,7,16,6};
struct BinaryTree
{
int data;
BinaryTree *pLeft;
BinaryTree *pRight;
};
BinaryTree *pRoot1=NULL;
void InsertTree(BinaryTree *root, int data)
{
if(root->data>data)//插入左边
{
if(root->pLeft==NULL)
{
root->pLeft=new BinaryTree;
root->pLeft->data=data;
root->pLeft->pLeft=root->pLeft->pRight=NULL;
}
else
{
InsertTree(root->pLeft,data);// 继续查找插入位置;
}
}
else
{
if(root->pRight==NULL)
{
root->pRight=new BinaryTree;
root->pRight->data=data;
root->pRight->pLeft=root->pRight->pRight=NULL;
}
else
InsertTree(root->pRight,data);
}
}
void CreateTree(BinaryTree **root,int *array,int length)
{
for(int i=0;i<length;i++)
{
if(*root==NULL)
{
BinaryTree *temp=new BinaryTree;
temp->data=array[i];
temp->pLeft=temp->pRight=NULL;
*root=temp;
}
else
InsertTree(*root,array[i]);
}
}
void PreOrder(BinaryTree *tree)
{
if(NULL!=tree)
{
cout<<tree->data<<" ";
PreOrder(tree->pLeft);
PreOrder(tree->pRight);
}
}
int TreeDepth(BinaryTree *root)
{
if(NULL==root)
return 0;
int left=TreeDepth(root->pLeft);
int right=TreeDepth(root->pRight);
return (left>right)?(left+1):(right+1);
}
int main()
{
int depth=0;
CreateTree(&pRoot1,arr,7);
cout<<"前序遍历:";
PreOrder(pRoot1);
cout<<endl;
depth=TreeDepth(pRoot1);
cout<<"树的深度为:"<<depth<<endl;
system("pause");
return 0;
}
运行结果是: