李响Superb
码龄3年
  • 1,713,098
    被访问
  • 1,585
    原创
  • 293
    排名
  • 14,900
    粉丝
关注
提问 私信

个人简介:成为优秀的CVer, 目前在读软件工程,计算机视觉、深度学习和医学图像处理专攻, 偶尔也搞迁移学习和全栈开发。

  • 加入CSDN时间: 2018-11-28
博客简介:

李响

博客描述:
他看了看满地的六便士,最终抬起头看见了月亮
查看详细资料
  • 9
    领奖
    总分 7,349 当月 401
个人成就
  • 计算机视觉领域优质创作者
  • 博客专家认证
  • 获得1,339次点赞
  • 内容获得398次评论
  • 获得3,727次收藏
创作历程
  • 33篇
    2022年
  • 400篇
    2021年
  • 675篇
    2020年
  • 477篇
    2019年
成就勋章
  • 入选《人工智能领域内容榜》第43名
TA的专栏
  • 迁移学习(Transfer L)全面指南
    付费
    12篇
  • 网络安全
    付费
    47篇
  • 机器学习入门到精通系列讲解
    付费
    33篇
  • 深度学习入门到精通系列讲解
    付费
    206篇
  • 算法
    付费
    318篇
  • OneFlow
    3篇
  • 提效工具
    12篇
  • Linux入门到精通系列讲解
    24篇
  • Deep learning
    34篇
  • 微信小程序企业级开发教程
    16篇
  • TensorFlow框架
    16篇
  • Keras框架
    19篇
  • U-Net网络
    10篇
  • Machine learning
    59篇
  • Android开发
    74篇
  • 网站开发
    3篇
  • Django
    15篇
  • 前端
    31篇
  • Java Web
    57篇
  • Python Libraries
    8篇
  • Matlibplot基础绘图
    13篇
  • PIL图像处理
  • OpenCV计算机视觉
    1篇
  • Numpy
    2篇
  • 数据库
    34篇
兴趣领域 设置
  • 人工智能
    深度学习
深度学习、ACM、全栈开发和AI攻防。
商务合作+微信:XLi666007
欢迎一起讨论学习!

我的微博(分享开发和生活)


点击关注
1502568508_6480.png
学如逆水行舟,不进则退!
1502568738_4946.png

❤必读专栏:C站第一个发散式深度学习教程,欢迎订阅

❤必刷专题:ACM和蓝桥杯 祝每一位访问我博客的有缘人都能找到爱你的和你爱的另一半!
  • 最近
  • 文章
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

CWT-for-FSS: 用 Transformer 思想的分类器进行小样本语义分割

文章目录1 前言2 CWT-for-FSS 整体架构3 求解方法4 实验结果分析5 代码和可视化6 总结7 参考链接1 前言之前写了几篇医学图像分割相关的论文阅读笔记,这次打算开个小样本语义分割的新坑。这篇阅读笔记中介绍的论文也是很久之前读过的,接受在 ICCV 上,思路值得借鉴。代码也已经跑过了,但是一直没来得及整理,arXiv:https://arxiv.org/pdf/2108.03032.pdf 。针对小样本语义分割问题,这篇论文提出一种更加简洁的元学习范式,即只对分类器进行
原创
发布博客 2022.05.21 ·
248 阅读 ·
1 点赞 ·
0 评论

基于GNet网络和Keras框架实战眼底图像视杯视盘分割

个人简介:李响Superb,CSDN百万访问量博主,普普通通男大学生,目前在读软件工程,计算机视觉、深度学习和医学图像处理专攻,偶尔也搞迁移学习和全栈开发。博客地址:lixiang.blog.csdn.net文章目录1 前言2 视杯视盘分割任务概述3 GNet网络结构4 眼底图像视杯视盘分割代码5 结果评估可视化(ROC曲线)6 眼底图像视杯视盘分割新思路1 前言本文基于GNet架构完成了视网膜视杯视盘提取任务,基于Keras框架更简单的实现分割,网络、工具类、训练和预测的代码一目了然,环境为Goo
原创
发布博客 2022.05.04 ·
368 阅读 ·
1 点赞 ·
0 评论

TransBTS: 3D 多模态脑肿瘤分割 Transformer 阅读笔记

文章目录1 前言2 TransBTS 整体结构概述3 Network Encoder4 Network Decoder5 实验部分6 总结7 参考链接1 前言这是医学图像处理系列的第三篇文章,arXiv 链接在文末,为什么选择写下 TransBTS 这篇论文的阅读笔记?因为才有时间整理了。此外,与之前的两篇相比,它们都有各自的代表性。第一篇(https://zhuanlan.zhihu.com/p/505483978)是 2D Transformer 医学图像分割,第二篇(https
原创
发布博客 2022.05.04 ·
163 阅读 ·
1 点赞 ·
0 评论

轻量级的肝脏与肝肿瘤 2.5D 分割网络阅读笔记

文章目录1 前言2 方法概述2.1 InceptionV1-V3 and convolution conversion2.2 Residual block2.3 2.5D 网络3 RIU-Net 的整体结构4 实验和可视化5 总结1 前言最近一直在读医学图像的论文,于是我打算写一个系列的阅读笔记,语言比较精简。在上一篇阅读笔记(https://zhuanlan.zhihu.com/p/505483978)中,分析了医学图像分割的混合 Transformer 网络:UTNet,在
原创
发布博客 2022.04.29 ·
302 阅读 ·
1 点赞 ·
0 评论

UTNet:用于医学图像分割的混合 Transformer 网络阅读笔记

文章目录1 概述2 浅析 Transformer 架构2.1 重看 Self-attention Mechanism2.2 高效的 Self-attention Mechanism2.3 Relative Positional Encoding3 UTNet 的整体结构4 实验5 总结6 参考链接1 概述很久之前读了这篇接收在 MICCAI 2021 上的文章,复现调试了代码之后还没有及时整理一篇阅读笔记。由于在 MICCAI 上,这篇文章同样没有大量的实验对比工作,但是提
原创
发布博客 2022.04.27 ·
198 阅读 ·
1 点赞 ·
0 评论

OneFlow 如何做静态图的算子对齐任务

文章目录1 前言2 OneFlow 的 Graph 算子对齐概述3 Graph 模式下自动测试实现原理3.1 AutoTest 流程介绍3.2 Graph 模式如何伴随 Eager 模式做算子对齐3.3 Graph 模式的自动测试个性化4 Graph 的 Debug 支持5 总结6 相关链接1 前言对于深度学习框架中模型的运行方式主要有两种,分别是动态图和静态图,动态图更易用,静态图性能更具优势,OneFlow 习惯将它们称为 Eager 模式和 Graph 模式。OneFl
原创
发布博客 2022.04.20 ·
131 阅读 ·
3 点赞 ·
0 评论

OneFlow 的 Global Tensor 学习笔记和实习总结

文章目录1 前言2 关于 Global Tensor2.1 OneFlow 分布式全局视角的基础保证2.2 SBP 自动转换2.3 to_global 方法2.4 GlobalTensor 类代码跟踪2.5 如何做 Global Ops 的执行测试3 总结4 参考链接1 前言为了简化分布式训练,OneFlow 提出了全局视角(Global View) 的概念,在全局视角下,可以像单机单卡编程,进行分布式训练。在 OneFlow 的设计中,使用 Placement、SBP 和
原创
发布博客 2022.04.20 ·
171 阅读 ·
2 点赞 ·
0 评论

【内网穿透】生壳SSH映射 for Linux 使用教程

一、下载进入花生壳站点下载Linux 5.0安装包,根据所使用的系统选择不同的版本下载。二、安装花生壳的安装步骤需在管理员权限下进行。(1)Centos系统1、安装,下载正确安装包后,通过cd命令进入所在的文件目录,根据不同位数的系统输入下面的命令进行安装,安装完成会自动生成SN码与登录密码。(注:如果部分centos主机本身已有wget依赖,安装后无法获取到SN码,请将wget依赖包更新到最新版本可正常获取)32位:rpm -ivh phddns-5.0.0.i686.rpm64位:rpm
原创
发布博客 2022.03.31 ·
216 阅读 ·
1 点赞 ·
0 评论

CUDA、CUDA toolkit、CUDNN、NVCC关系

CUDA:为“GPU通用计算”构建的运算平台。cudnn:为深度学习计算设计的软件库。CUDA Toolkit (nvidia): CUDA完整的工具安装包,其中提供了 Nvidia 驱动程序、开发 CUDA 程序相关的开发工具包等可供安装的选项。包括 CUDA 程序的编译器、IDE、调试器等,CUDA 程序所对应的各式库文件以及它们的头文件。CUDA Toolkit (Pytorch): CUDA不完整的工具安装包,其主要包含在使用 CUDA 相关的功能时所依赖的动态链接库。不会安装驱动程序。(N
原创
发布博客 2022.03.31 ·
274 阅读 ·
1 点赞 ·
0 评论

使用 jQuery 修改 DOM 方法

一旦你使用jQuery函数找到元素集合后,你就可以使用各种方法更改它们。用该命令设置内部文本 text():$(“h1”).text(“All about cats”);用该命令设置内部文本 html():$(“h1”).html(“I love cats”);用该命令设置属性 attr():$(".dog-pic").attr(“src”, “dog.jpg”);$(".google-link").attr(“href”, “http://www.google.com”);用该命令修改 C
原创
发布博客 2022.03.31 ·
771 阅读 ·
1 点赞 ·
0 评论

自动混合精度(AMP)介绍与使用【Pytorch】

文章目录1 前言2 Mixed Precision Training3 torch自动混合精度(AMP)介绍与使用4 torch1.6及以上版本1 前言pytorch从1.6版本开始,已经内置了torch.cuda.amp,采用自动混合精度训练就不需要加载第三方NVIDIA的apex库。使用精度低于32位浮点的数值格式有许多好处。首先,它们需要更少的内存,从而能够训练和部署更大的神经网络。其次,它们需要较少的内存带宽,从而加快数据传输操作。第三,数学运算在降低精度方面运行得更快,特别是在具有Tenso
原创
发布博客 2022.03.30 ·
1882 阅读 ·
1 点赞 ·
0 评论

C++【力扣LeetCode算法题库】47. 全排列 II

给定一个可包含重复数字的序列 nums ,按任意顺序 返回所有不重复的全排列。示例 1:输入:nums = [1,1,2]输出:[[1,1,2], [1,2,1], [2,1,1]]示例 2:输入:nums = [1,2,3]输出:[[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]class Solution {public: vector<vector<int>> ans; void trackback
原创
发布博客 2022.03.28 ·
729 阅读 ·
2 点赞 ·
0 评论

DLPack构建跨框架深度学习编译器-实现张量之间的相互转换【pytorch】

文章目录1 概述2 pytorch使用torch.utils.dlpack实现DLPack与张量之间的相互转换2.1 将DLPack解码为张量。2.2 将张量转换为DLPack3 在 PyTorch 示例的底层1 概述诸如 Tensorflow、PyTorch 和 Apache MxNet 等深度学习框架为深度学习的快速原型设计和模型部署提供了强大的工具箱。不幸的是,它们的易用性通常以碎片化为代价:这仅限于单独使用每个框架。垂直整合使得开发流程适用于常见用例,但打破常规可能会非常棘手。一种支持不足的情
原创
发布博客 2022.03.25 ·
152 阅读 ·
1 点赞 ·
0 评论

零基础基于U-Net网络实战眼底图像血管提取

文章目录1 前言2 血管提取任务概述3 U-Net架构简介4 眼底图像血管分割代码5 结果评估可视化(ROC曲线)6 改进U-Net网络完成眼底图像血管提取任务思路1 前言本文基于U-Net架构完成了视网膜血管的提取任务,基于Keras框架更简单的实现分割,网络、工具类、训练和预测的代码一目了然
原创
发布博客 2022.03.22 ·
3932 阅读 ·
2 点赞 ·
0 评论

CVPR 2021|DS-TransUNet:Transformer医学图像分割,表现SOTA

论文标题:DS-TransUNet: Dual Swin Transformer U-Net for Medical Image Segmentation论文地址:https://arxiv.org/pdf/2106.06716.pdf文章目录1 前言 1.1 Transformer 1.2 Swin Transformer结构2 Hierarchical Feature Representation3 局部dependency4 DS-TransUNet:医学图.
原创
发布博客 2022.03.22 ·
4870 阅读 ·
1 点赞 ·
0 评论

PyTorch中的Element-wise operations

1. What does element-wise mean?逐个元素操作是两个tensor之间的操作,该操作在相应tensor内的对应元素上进行,t1和t2中的1和9就是tensor中的对应元素。加法是按element-wise进行的运算,实际上,所有算术运算(加,减,乘和除)都是按逐个元素进行的运算。标量值是Rank-0张量,而我们的tensor t1是2 x 2形状的rank-2 tensor。不同形状的tensor进行操作时需要引入broadcast概念。2. Broadcasting
原创
发布博客 2022.03.17 ·
1226 阅读 ·
2 点赞 ·
0 评论

一种安全的static变量Get/Set方式

目的:避免static变量是个文件内可见的全局变量Get:std::atomic<bool>* GetGraphVerboseStepLr() { static std::atomic<bool> graph_verbose_step_lr{false}; return &graph_verbose_step_lr;}Set:void SetGraphVerboseStepLr(bool verbose) { auto* graph_verbose_s
原创
发布博客 2022.03.14 ·
545 阅读 ·
1 点赞 ·
0 评论

C++中的sta::atomic<bool>和auto类型

文章目录sta::atomicauto类型用法总结sta::atomic最基本的原子整数类型是std::atomic(可以使用预定义的别名std::atomic_bool),这是一个比std::atomic_flag功能更全的布尔标志,并且可以使用非原子的bool来赋值和初始化。std::atomic<bool> b(true);b=false;要注意的是,原子类型赋值操作返回值而非引用。与std::atomic_flag使用clear不同,std::atomic写(存储)操作是
原创
发布博客 2022.03.12 ·
1966 阅读 ·
3 点赞 ·
0 评论

GCC中的分支预测(likely和unlikey)

文章目录概述场景总结概述开发人员在开发服务的过程中,可以根据业务逻辑的特性来判断当前的条件语句被执行的概率情况,经常被执行到的代码片段可以紧邻顺序执行的代码片段后边,偶尔被执行到的条件代码片段被放到其他代码片段,从而减少代码在顺序执行过程中的代码上下文的跳转次数,达到提高程序执行效率的目的。这种方式的优化,需要严重的依赖于业务逻辑所处的环境,对于GCC等编译器来将,显然是无法根据业务逻辑自动做出性能优化的,最直接的一种方法就是:由开发人员告诉编译器,这部分代码片段被执行的概率比较高,可以进行优化。为此,
原创
发布博客 2022.03.11 ·
153 阅读 ·
1 点赞 ·
0 评论

Python中的Optional和带默认值的参数

文章目录带默认值的参数Typing.Optional类Optional[X]等价于Union[X, None]带默认值的参数在Python中的类或者函数中,若参数在声明时附带了它的默认值,则在实例化或调用时,可以选择性地为该参数赋值,例如:#默认值参数def foo_v1(a: int, b: int = 1): print(a + b)#未给b传入实参时,采用默认值 foo_v1(2)# 输出# >>> 3【 注意: 规定默认值时,不一定要声明变量所
原创
发布博客 2022.03.10 ·
248 阅读 ·
1 点赞 ·
0 评论
加载更多