LeetCode——爬梯子

本文探讨了经典的爬楼梯问题,通过分析得出其解决方案与斐波那契数列紧密相关。文章对比了递归方法和动态规划方法在解决此问题上的效率,指出递归方法虽然直观但易导致计算重复,而动态规划则能有效避免重复计算,提高求解速度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

分析计算时候发现就是    斐波那契数列   ;

每次只能爬1步或2步,爬到第n层的方法要么是从第n-1层1步上来的,要不就是从n-2层2步上来的。

递归:【超时】

    int climbStairs(int n) {
        if (n < 0)
            return 0;
        if (n == 1 | n == 0)
            return 1;
        int steps = 0;
        steps = climbStairs(n-1) + climbStairs(n-2);
        return steps;
    }

动态规划 :

int climbStairs(int n) {
        if (n <= 0)
            return 0;
        if (n == 1)
            return 1;
        vector<int> vec(n+1);
        vec[0] = 1;
        vec[1] = 1;
        for (int i = 2; i <= n; ++i)
        {
            vec[i] = vec[i-1] + vec[i-2];
        }
        return vec[n];
    }

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值