Java剑指 Offer II 073. 狒狒吃香蕉(击败99.55%%用户)

这篇博客讨论了一个关于狒狒吃香蕉的问题,其中涉及到在限定时间内以最小速度吃完所有香蕉的策略。博主提出了一种基于二分查找的解决方案,通过计算不同速度下完成吃香蕉所需时间来确定最小速度。算法的时间复杂度为O(mlogn),其中m为香蕉堆数,n为最大香蕉数。此外,博客还提到了复杂度分析和具体实现代码。
摘要由CSDN通过智能技术生成

题目:

狒狒喜欢吃香蕉。这里有 N 堆香蕉,第 i 堆中有 piles[i] 根香蕉。警卫已经离开了,将在 H 小时后回来。

狒狒可以决定她吃香蕉的速度 K (单位:根/小时)。每个小时,她将会选择一堆香蕉,从中吃掉 K 根。如果这堆香蕉少于 K 根,她将吃掉这堆的所有香蕉,然后这一小时内不会再吃更多的香蕉,下一个小时才会开始吃另一堆的香蕉。  

狒狒喜欢慢慢吃,但仍然想在警卫回来前吃掉所有的香蕉。

返回她可以在 H 小时内吃掉所有香蕉的最小速度 K(K 为整数)。

示例 :

输入: piles = [3,6,7,11], H = 8
输出: 4

思路:

        最小速度应该首先取决于H,返回时长应该大于堆数,这样最起码能满足每一堆花一个小时解决。

        先看H比堆数大多少,也就是H和piles.ength的差值,代表能余出来多少小时。在看这多出来的时间应该如何分配。

        或者不用这么麻烦,将K从一到最大香蕉数做一个二分查找,再算出时间,算出在时间内最小的速度K就行了。

复杂度:

时间:查找是logn,共有m堆香蕉,总复杂度在(mlogn)

空间:O(1)

代码:

   private int[] piles;
    public int minEatingSpeed(int[] piles, int h) {
        this.piles = piles;
        // 获取最大速度, 由于一次最多只能吃一堆香蕉, 所以最大速度为最大一堆香蕉的数量
        int maxSpeed = Integer.MIN_VALUE;
        for(int pile : piles){
            maxSpeed = Math.max(maxSpeed, pile);
        }
        // 左指针是最小速度, 右指针是最大速度
        int left = 1, right = maxSpeed;
        while (left < right){
            int mid = left + (right - left) / 2;
            if(getEattingHour(mid) > h){
                // 当以 mid 速度吃完香蕉的时间 > h , 则提速要提升, left 指针右移
                left = mid + 1;
            }else{
                // 当以 mid 速度吃完香蕉的时间 <= h , 则最低吃香蕉速度可能为 mid, 或者 比 mid 小 ,
                // 所以, right = mid , 而不是 mid - 1
                right = mid;
            }
        }
        // 最终 left == right, 指向就是最小速度
        return left;
    }

    // 计算以 speed 的速度吃完香蕉的时间
    private int getEattingHour(int speed){
        int hour = 0;
        // 由于,每次最多吃一堆, 所以吃完香蕉的总时间需要 计算每堆香蕉吃完的时间
        for(int pile : piles){
            // 每堆香蕉吃完的时间 = 这一堆香蕉数/吃的速度, 结果向上取整
            hour += (pile + speed - 1) / speed;
        }
        return hour;
    }


 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值