Java剑指 Offer II 093. 最长斐波那契数列(击败19.55%用户).。。。

题目:

如果序列 X_1, X_2, ..., X_n 满足下列条件,就说它是 斐波那契式 的:

n >= 3
对于所有 i + 2 <= n,都有 X_i + X_{i+1} = X_{i+2}
给定一个严格递增的正整数数组形成序列 arr ,找到 arr 中最长的斐波那契式的子序列的长度。如果一个不存在,返回  0 。

(回想一下,子序列是从原序列  arr 中派生出来的,它从 arr 中删掉任意数量的元素(也可以不删),而不改变其余元素的顺序。例如, [3, 5, 8] 是 [3, 4, 5, 6, 7, 8] 的一个子序列)

示例 :

输入: arr = [1,2,3,4,5,6,7,8]
输出: 5
解释: 最长的斐波那契式子序列为 [1,2,3,5,8] 。


思路:

动态规划最困难的点在于建立状态转移方程。没想明白。看题解看了好久才明白一点。

dp[ i ][ j ]用来表示以在数组A中以A【i】,A【j】结尾的斐波那契数列的最大长度

也就是   dp[i][j]=Len(......,A[i],A[j])

既然是满足斐波那契数列的那在前面一定有一个A【k】是满足加Ai = Aj的

那么dp【k】【i】加上Aj的长度就等于dp【i】【j】

就是dp【k】【i】 + 1 = dp【i】【j】

复杂度:

时间:双重循环O(n*n)。

空间:dp【】【】二维数组空间O(n^2)。

代码:效率比较拉胯,但是比较容易懂

 public int lenLongestFibSubseq(int[] arr) {
        int n = arr.length;
        //新建一个map存key-value
        Map<Integer,Integer> map = new HashMap<>();
        for(int i = 0;i<n;++i){
            map.put(arr[i],i);
        }

        //建立dp数组保存状态
        int[][] dp = new int[n][n];
        //从0,1开始
        int res = 2;
        for(int j = 1;j<n;++j){
            for(int i = 0;i<j;++i){
                //k就是满足arr[i]+arr[k]=arr[j]的,只要能找到k,就有斐波那契数列
                int k = map.getOrDefault(arr[j]-arr[i],-1);
                dp[i][j] = k>=0 && k<i ? dp[k][i]+ 1:2;
                res =Math.max(res,dp[i][j]);
            }
        }
        return res > 2 ? res: 0;
    }

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值