Java剑指 Offer II 099. 最小路径之和(击败97.48%用户)

题目:

给定一个包含非负整数的 m x n 网格 grid ,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。

说明:一个机器人每次只能向下或者向右移动一步。

示例 :

输入:grid = [[1,3,1],[1,5,1],[4,2,1]]
输出:7
解释:因为路径 1→3→1→1→1 的总和最小。


思路:

现在这个mid题对我来说基本上可以了。

我应该没有写的很好,修修补补的,应该可以思路再清晰点

复杂度:

时间:双重循环O(m*n)。

空间:O(m*n)。

代码:

 public int minPathSum(int[][] grid) {
        int m = grid.length;
        int n = grid[0].length;
        //建立dp[i][j]表示走到i,j位置的总和
        int[][] dp = new int[m][n];  //最终就走到m-1,n-1
        //推公式,从上往下,从左往右,两种里取一种最小的 
        //dp[i][j] = Math.min(dp[i-1][j],dp[i][j-1])+grid[i][j];

        //初始化要把dp[i][0]和dp[0][j]初始化,第一个放在循环里初始化
        for(int j = 1;j<n;++j){
            dp[0][j] = dp[0][j-1] + grid[0][j];
        }
        for(int i = 1; i< m;++i){
            dp[i][0] = dp[i-1][0] + grid[i][0];
            for(int j=1;j<n;++j){
               dp[i][j] = Math.min(dp[i-1][j],dp[i][j-1])+grid[i][j]; 
            }
        }
    return dp[m-1][n-1] + grid[0][0];
    }

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值